Show simple item record

Brownian dynamics simulations of flexible polymers with spring–spring repulsions

dc.contributor.authorKumar, Satishen_US
dc.contributor.authorLarson, Ronald G.en_US
dc.date.accessioned2010-05-06T20:49:10Z
dc.date.available2010-05-06T20:49:10Z
dc.date.issued2001-04-15en_US
dc.identifier.citationKumar, Satish; Larson, Ronald G. (2001). "Brownian dynamics simulations of flexible polymers with spring–spring repulsions." The Journal of Chemical Physics 114(15): 6937-6941. <http://hdl.handle.net/2027.42/69579>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69579
dc.description.abstractWe develop a method which incorporates spring–spring repulsions into Brownian dynamics simulations of flexible polymers. The distance of closest approach between two springs is computed, and a repulsive force is then applied based on this distance. Repulsive potentials of the exponential and power-law forms are considered. We demonstrate that our method is capable of accounting for excluded-volume effects in start-up of extensional flow. Equilibrium simulations indicate that spring-spring repulsions can be used to prevent the passage of two springs through each other, and thus maintain the topological integrity of polymer molecules. The method developed here is expected to be useful for simulating entanglement phenomena in both single and multichain systems. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent101740 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBrownian dynamics simulations of flexible polymers with spring–spring repulsionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, 2300 Hayward, 3074 H. H. Dow Building, Ann Arbor, Michigan 48103en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69579/2/JCPSA6-114-15-6937-1.pdf
dc.identifier.doi10.1063/1.1358860en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. C. Armstrong, S. K. Gupta, and O. Basaran, Polym. Eng. Sci. PYESAZ20, 466 (1980).en_US
dc.identifier.citedreferenceM. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).en_US
dc.identifier.citedreferenceR. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987), Vol. 1.en_US
dc.identifier.citedreferenceM. E. Starkweather, M. Muthukumar, and D. A. Hoagland, Macromolecules MAMOBX31, 5495 (1998).en_US
dc.identifier.citedreferenceR. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987), Vol. 2.en_US
dc.identifier.citedreferenceW. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989).en_US
dc.identifier.citedreferenceD. L. Ermak and J. A. McCammon, J. Chem. Phys. JCPSA669, 1352 (1978).en_US
dc.identifier.citedreferenceR. M. Jendrejack, M. D. Graham, and J. J. de Pablo, J. Chem. Phys. JCPSA6113, 2894 (2000).en_US
dc.identifier.citedreferenceR. G. Larson, H. Hu, D. E. Smith, and S. Chu, J. Rheol. JORHD243, 267 (1999).en_US
dc.identifier.citedreferenceL. Li, G. Larson, and T. Sridhar, J. Rheol. JORHD244, 291 (2000).en_US
dc.identifier.citedreferenceJ. S. Hur, E. S. G. Shaqfeh, and R. G. Larson, J. Rheol. JORHD244, 713 (2000).en_US
dc.identifier.citedreferenceL. Li and R. G. Larson, Rheol. Acta RHEAAK39, 419 (2000).en_US
dc.identifier.citedreferenceS. W. Fetsko and P. T. Cummings, J. Rheol. JORHD239, 285 (1995).en_US
dc.identifier.citedreferenceE. Ben-Naim, G. S. Grest, T. A. Witten, and A. R. C. Baljon, Phys. Rev. E PLEEE853, 1816 (1996).en_US
dc.identifier.citedreferenceZ. Xu, S. Kim, and J. J. de Pablo, J. Chem. Phys. JCPSA6101, 5293 (1994).en_US
dc.identifier.citedreferenceA. Rey, J. J. Freire, and J. García de la Torre, Polymer POLMAG33, 3477 (1992).en_US
dc.identifier.citedreferenceK. D. Knudsen, J. García de la Torre, and A. Elgsaeter, Polymer POLMAG37, 1317 (1996).en_US
dc.identifier.citedreferenceJ. G. Hernández Cifre and J. García de la Torre, J. Rheol. JORHD243, 339 (1999).en_US
dc.identifier.citedreferenceP. S. Doyle, E. S. G. Shaqfeh, and A. P. Gast, J. Fluid Mech. JFLSA7334, 251 (1997).en_US
dc.identifier.citedreferenceP. S. Doyle and E. S. G. Shaqfeh, J. Non-Newtonian Fluid Mech. JNFMDI76, 43 (1998).en_US
dc.identifier.citedreferenceP. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley, and S. H. Spiegelberg, J. Non-Newtonian Fluid Mech. JNFMDI76, 79 (1998).en_US
dc.identifier.citedreferenceA. Cohen, Rheol. Acta RHEAAK30, 270 (1991).en_US
dc.identifier.citedreferenceN. V. Orr and T. Sridhar, J. Non-Newtonian Fluid Mech. JNFMDI82, 203 (1999).en_US
dc.identifier.citedreferenceT. Sridhar, D. A. Nguyen, and G. G. Fuller, J. Non-Newtonian Fluid Mech. JNFMDI90, 299 (2000).en_US
dc.identifier.citedreferenceM. J. Solomon and S. J. Muller, J. Polym. Sci., Part B: Polym. Phys. JPBPEM34, 181 (1996).en_US
dc.identifier.citedreferenceR. G. Larson, The Structure and Rheology of Complex Fluids (Oxford, New York, 1999).en_US
dc.identifier.citedreferenceFor the power-law potential, we applied a cutoff distance equal to 21/6σ.21/6σ. To within statistical error, the time-averaged radius-of-gyration remained the same when the time step was decreased by a factor of 2. No cutoff distance was applied for the exponential potential.en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford, New York, 1987).en_US
dc.identifier.citedreferenceC. Xiao and D. M. Heyes, Phys. Rev. E PLEEE860, 5757 (1999).en_US
dc.identifier.citedreferenceC. Xiao and D. M. Heyes, J. Chem. Phys. JCPSA6111, 10694 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.