Show simple item record

Measurement of the Thermal Conductivity of Argon, Krypton, and Nitrogen in the Range 800–2000°K

dc.contributor.authorFaubert, Francis M.en_US
dc.contributor.authorSpringer, George S.en_US
dc.date.accessioned2010-05-06T20:53:06Z
dc.date.available2010-05-06T20:53:06Z
dc.date.issued1972-09-15en_US
dc.identifier.citationFaubert, Francis M.; Springer, George S. (1972). "Measurement of the Thermal Conductivity of Argon, Krypton, and Nitrogen in the Range 800–2000°K." The Journal of Chemical Physics 57(6): 2333-2340. <http://hdl.handle.net/2027.42/69622>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69622
dc.description.abstractThe thermal conductivities of argon, krypton, and nitrogen were measured at 760 mm Hg in the temperature range 800–2000°K. Two thermal conductivity columns of different outside diameters were used in the experiments to provide an assessment of the convective heat transfer. In addition, potential leads were employed to minimize convection and end effects. The thermal conductivity values obtained were compared with existing data, with results of viscosity measurements, and with theoretical predictions.en_US
dc.format.extent3102 bytes
dc.format.extent574735 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMeasurement of the Thermal Conductivity of Argon, Krypton, and Nitrogen in the Range 800–2000°Ken_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumFluid Dynamics Laboratory, Department of Mechanical Engineering, The University of Michigan, Ann Arbor 48105en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69622/2/JCPSA6-57-6-2333-1.pdf
dc.identifier.doi10.1063/1.1678589en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceN. V. Tsederberg, The Thermal Conductivity of Gases and Liquids (Technology, Cambridge, Mass., 1965).en_US
dc.identifier.citedreferenceS. C. Saxena and J. M. Gandhi, J. Sci. Ind. Res. 26, 458 (1967).en_US
dc.identifier.citedreferenceA. J. Rothman and L. A. Bromley, Ind. Eng. Chem. 47, 899 (1955).en_US
dc.identifier.citedreferenceR. G. Vines, J. Heat Transfer 82, 48 (1960).en_US
dc.identifier.citedreferenceN. C. Blais and J. B. Mann, J. Chem. Phys. 32, 1459 (1960).en_US
dc.identifier.citedreferenceN. B. Vargaftik and N. K. Zimina, Teplofiz. Vysokikh Temp. 2, 716 (1964) [High Temp. 2, 645 (1964)].en_US
dc.identifier.citedreferenceN. B. Vargaftik and N. K. Zimina, Teplofiz. Vysokikh Temp. 2, 838 (1964) [High Temp. 2, 782 (1964)].en_US
dc.identifier.citedreferenceD. L. Timrot and A. S. Umanskii, Teplofiz. Vysokikh Temp. 3, 381 (1965) [High Temp. 3, 345 (1965)].en_US
dc.identifier.citedreferenceD. L. Timrot and A. S. Umanskii, Teplofiz. Vysokikh Temp. 4, 289 (1966) [High Temp. 4, 285 (1966)].en_US
dc.identifier.citedreferenceA. S. Umanskii and D. L. Timrot, in Thermal Conductivity, edited by C. Y. Ho and R. E. Taylor (Plenum, New York, 1969), p. 151.en_US
dc.identifier.citedreferenceV. K. Saxena and S. C. Saxena, J. Phys. D. 1, 1341 (1968).en_US
dc.identifier.citedreferenceV. K. Saxena and S. C. Saxena, Chem. Phys. Letters 2, 44 (1968).en_US
dc.identifier.citedreferenceV. K. Saxena and S. C. Saxena, J. Chem. Phys. 48, 5662 (1968).en_US
dc.identifier.citedreferenceS. C. Saxena, G. P. Gupta, and V. K. Saxena, Ref. 10, p. 125.en_US
dc.identifier.citedreferenceV. K. Saxena and S. C. Saxena, J. Chem. Phys. 51, 3361 (1969).en_US
dc.identifier.citedreferenceS. C. Saxena and G. P. Gupta, Progr. Aeron. Astron. 23, 34 (1970).en_US
dc.identifier.citedreferenceR. Desmond, Ph.D. thesis, University of Minnesota, Minneapolis, Minn. 1968.en_US
dc.identifier.citedreferenceD. E. Poland, J. W. Green, and J. L. Margrave, Natl. Bur. Std. (U.S.) Monograph 30 (1961).en_US
dc.identifier.citedreferenceP. D. Foote, C. O. Fairchild, and T. R. Harrison, Natl. Bur. Std. (U.S.) Tech. Paper 170 (1921).en_US
dc.identifier.citedreferenceH. J. Kostowski and R. D. Lee, Natl. Bur. Std. (U.S.) Monograph 41 (1962).en_US
dc.identifier.citedreferenceC. J. Smithells, Tungsten (Chapman and Hall, London, 1952), 3rd ed., p. 177.en_US
dc.identifier.citedreferenceF. M. Faubert, Ph.D. thesis, The University of Michigan, Ann Arbor, Mich. 1971.en_US
dc.identifier.citedreferenceG. K. Batchelor, J. Appl. Math. 12, 209 (1954).en_US
dc.identifier.citedreferenceE. R. G. Eckert and W. O. Carlson, Intern. J. Heat Mass Transfer 2, 106 (1961).en_US
dc.identifier.citedreferenceW. H. Lipkea and G. S. Springer, Intern. J. Heat Mass Transfer 11, 1341 (1968).en_US
dc.identifier.citedreferenceR. W. Thomas and G. de Vahl Davis, Proc. Intern. Conf. Heat Transfer Paris‐Versailles, 1970 4, NC 2.4 (1970).en_US
dc.identifier.citedreferenceJ. W. Elder, J. Fluid Mech. 24, 823 (1966).en_US
dc.identifier.citedreferenceC. M. Vest, J. Fluid Mech. 36, 1 (1969).en_US
dc.identifier.citedreferenceLipkea and Springer25 evaluated the Rayleigh number based on the average temperature [(Tj+TD)/2][(Tj+TD)∕2] between filament and outer cylinder, giving the denominator as 4400. Using the mean temperature T̄ (where   =  constρ̄T̄=const) the denominator becomes 7670.en_US
dc.identifier.citedreferenceJ. B. Scarborough, Numerical Mathematical Analysis (Johns Hopkins, Baltimore, Md., 1955).en_US
dc.identifier.citedreferenceG. S. Springer, in Advances of Heat Transfer, edited by T. F. Irvine, Jr., and J. P. Hartnett (Academic, New York, 1971), Vol. 7, p. 163.en_US
dc.identifier.citedreferenceD. B. Sheldon and G. S. Springer, Phys. Fluids 11, 1312 (1968).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, C. F. Curtis, and R. B. Byrd, Molecular Theory of Gases and Liquids (Wiley, New York, 1967).en_US
dc.identifier.citedreferenceThe authors are grateful to Professor J. Kestin for suggesting this method of correlation.en_US
dc.identifier.citedreferenceE. F. Smiley, Ph.D. Thesis, The Catholic University of America, Washington, D.C., 1957.en_US
dc.identifier.citedreferenceD. J. Collins and W. A. Menard, J. Heat Transfer 88, 52 (1966).en_US
dc.identifier.citedreferenceC. S. Lee and C. F. Bonilla, Proc. Conf. Thermal Conductivity, 7th, Natl. Bur. Std., Gaithersburg, Md., 1967.en_US
dc.identifier.citedreferenceF. A. Guevara, B. B. McInteer, and W. E. Wageman, Phys. Fluids 12, 2493 (1969).en_US
dc.identifier.citedreferenceR. Dipippo and J. Kestin, Symp. Thermophys. Properties 4th, New York, 304 (1968).en_US
dc.identifier.citedreferenceM. Goldblatt, F. A. Guevara, and B. B. McInteer, Phys. Fluids 13, 2873 (1970).en_US
dc.identifier.citedreferenceJ. Hilsenrath et al., Natl. Bur. Std. (U.S.) Circ. No. 564 (1955).en_US
dc.identifier.citedreferenceE. A. Mason and L. Monchick, J. Chem. Phys. 36, 1622 (1962).en_US
dc.identifier.citedreferenceI. Amdur and E. A. Mason, Phys. Fluids 1, 370 (1958).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, J. Chem. Phys. 26, 282 (1957).en_US
dc.identifier.citedreferenceJ. H. Dymond and B. J. Alder, J. Chem. Phys. 51, 390 (1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.