Show simple item record

High resistivity and ultrafast carrier lifetime in argon implanted GaAs

dc.contributor.authorWalukiewicz, W.en_US
dc.contributor.authorLiliental‐weber, Z.en_US
dc.contributor.authorJasinski, J.en_US
dc.contributor.authorAlmonte, M.en_US
dc.contributor.authorPrasad, A.en_US
dc.contributor.authorHaller, E. E.en_US
dc.contributor.authorWeber, E. R.en_US
dc.contributor.authorGrenier, P.en_US
dc.contributor.authorWhitaker, John F.en_US
dc.date.accessioned2010-05-06T20:54:30Z
dc.date.available2010-05-06T20:54:30Z
dc.date.issued1996-10-21en_US
dc.identifier.citationWalukiewicz, W.; Liliental‐Weber, Z.; Jasinski, J.; Almonte, M.; Prasad, A.; Haller, E. E.; Weber, E. R.; Grenier, P.; Whitaker, J. F. (1996). "High resistivity and ultrafast carrier lifetime in argon implanted GaAs." Applied Physics Letters 69(17): 2569-2571. <http://hdl.handle.net/2027.42/69637>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69637
dc.description.abstractWe have investigated the optoelectronic and structural properties of GaAs that has been implanted with Ar ions and subsequently annealed. The material exhibits all the basic optical and electronic characteristics typically observed in nonstoichiometric, As implanted or low‐temperature‐grown GaAs. Annealing of Ar implanted GaAs at 600 °C produces a highly resistive material with a subpicosecond trapping lifetime for photoexcited carriers. Transmission electron microscopy shows that, instead of As precipitates, characteristic for the nonstoichiometeric GaAs, voids ranging in size from 3 to 5 nm are observed in Ar implanted and annealed GaAs. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent151401 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHigh resistivity and ultrafast carrier lifetime in argon implanted GaAsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherLawrence Berkeley National Laboratory, Berkeley, California 94720en_US
dc.contributor.affiliationotherLawrence Berkeley National Laboratory and University of California, Berkeley, California 94720en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69637/2/APPLAB-69-17-2569-1.pdf
dc.identifier.doi10.1063/1.117702en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceF. W. Smith, A. R. Calawa, C.-L. Chen, M. J. Mantra, and L. J. Mahoney, IEEE Electron. Device Lett. EDLEDZINS9, 77(1988).en_US
dc.identifier.citedreferenceM. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, Appl. Phys. Lett. 54, 1881 (1989); Z. Liliental-Weber, Mater. Res. Soc. Proc. 198, 371 (1991).en_US
dc.identifier.citedreferenceA. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. APPLABAIP57, 1331(1990).en_US
dc.identifier.citedreferenceD. C. Look, Thin Solid Films THSFAPINS231, 61(1993).en_US
dc.identifier.citedreferenceD. E. Bliss, W. Walukiewicz, J. W. Ager III, E. E. Haller, K. T. Chan, and S. Tanigawa, J. Appl. Phys. JAPIAUAIP71, 1699(1992).en_US
dc.identifier.citedreferenceS. M. McQuaid, R. C. Newman, M. Missous, and S. O’Hagan, Appl. Phys. Lett. APPLABAIP61, 3008(1992).en_US
dc.identifier.citedreferenceN. Atique, E. S. Harmon, J. C. P. Chang, J. M. Woodall, M. R. Melloch, and N. Otsuka, J. Appl. Phys. JAPIAUAIP77, 1471(1994).en_US
dc.identifier.citedreferenceS. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, F. W. Smith, and A. R. Calawa, Appl. Phys. Lett. APPLABAIP59, 3276(1991).en_US
dc.identifier.citedreferenceE. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, Appl. Phys. Lett. APPLABAIP63, 2248(1993).en_US
dc.identifier.citedreferenceA. Claverie, F. Namavar, and Z. Liliental-Weber, Appl. Phys. Lett. APPLABAIP62, 1271(1993).en_US
dc.identifier.citedreferenceC. Jagadish, H. H. Tan, J. Jasinski, M. Kaminska, M. Palczewska, A. Krotkus, and S. Marcinkevicius, Appl. Phys. Lett. APPLABAIP67, 1724(1995).en_US
dc.identifier.citedreferenceSee, for example, M. R. Melloch, J. M. Woodall, E. S. Harmon, N. Atique, D. D. Nolte, J. C. P. Chang, and N. Otsuka, Proceedings of the Semi-insulating III-V Materials Conference, Warsaw, Poland, 1994, edited by M. Godlewski (World Scientific, Singapore, 1994), p. 319, and references therein.en_US
dc.identifier.citedreferenceJ. C. P. Chang, N. Otsuka, E. S. Harmon, M. R. Melloch, and J. M. Woodall, Appl. Phys. Lett. APPLABAIP65, 2801(1994).en_US
dc.identifier.citedreferenceJ. H. Makok and N. M. Haegel, Mater. Res. Symp. Proc. MRSPDHINS240, 817(1992).en_US
dc.identifier.citedreferenceD. M. Hofmann, B. K. Mayer, J. M. Spaeth, M. Watlenbach, J. Krüger, C. Kisielowski-Kemmerich, and H. Alexander, J. Appl. Phys. JAPIAUAIP68, 3381(1990).en_US
dc.identifier.citedreferenceM. Lambsdorf, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, Appl. Phys. Lett. APPLABAIP58, 1881(1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.