Show simple item record

Effects of Turbulence on Laminar Skin Friction and Heat Transfer

dc.contributor.authorSmith, Mahlon Cooperen_US
dc.contributor.authorKuethe, Arnold M.en_US
dc.date.accessioned2010-05-06T20:56:11Z
dc.date.available2010-05-06T20:56:11Z
dc.date.issued1966-12en_US
dc.identifier.citationSmith, Mahlon C.; Kuethe, Arnold M. (1966). "Effects of Turbulence on Laminar Skin Friction and Heat Transfer." Physics of Fluids 9(12): 2337-2344. <http://hdl.handle.net/2027.42/69655>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69655
dc.description.abstractExperiments were performed in two low‐turbulence wind tunnels (u∞′ < 0.1%) to determine the effects of turbulence on heat transfer from plates and circular cylinders in incompressible flow. Grid turbulence up to 6% was imposed. Heat transfer was increased about 30% in the laminar region of a flat plate and up to 70% on a circular cylinder; smaller though still significant increases in shearing stress at the wall were measured by hot wires near the surface. A phenomenological theory is given which shows good agreement with the experiment.en_US
dc.format.extent3102 bytes
dc.format.extent613544 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffects of Turbulence on Laminar Skin Friction and Heat Transferen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69655/2/PFLDAS-9-12-2337-1.pdf
dc.identifier.doi10.1063/1.1761623en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceM. C. Smith, Ph.D. thesis, University of Michigan (1964).en_US
dc.identifier.citedreferenceA. Edwards and B. N. Furber, Proc. Inst. Mech. Engrs. 170, 941 (1956).en_US
dc.identifier.citedreferenceJ. Kestin, P. F. Meader, and H. E. Wang, Intern. J. Heat Mass Transfer 3, 133 (1961).en_US
dc.identifier.citedreferenceM. J. Lighthill, Proc. Roy. Soc. (London) A224, 1 (1954).en_US
dc.identifier.citedreferenceC. C. Lin, in Proceedings of the Ninth International Congress on Applied Mechanics (University of Brussels, Brussels, Belgium, 1957).en_US
dc.identifier.citedreferenceM. B. Glauert, J. Fluid Mech. 1, 97 (1956).en_US
dc.identifier.citedreferenceW. H. Giedt, Trans. ASME 71, 375 (1949).en_US
dc.identifier.citedreferenceJ. Kestin, P. F. Maeder, and H. H. Sogin, Z. Angew. Math. Phys. 12, 115 (1961).en_US
dc.identifier.citedreferenceR. A. Seban, J. Heat Transfer 82, 101 (1960).en_US
dc.identifier.citedreferenceG. M. Zapp, MSE thesis, Oregon State University (1950).en_US
dc.identifier.citedreferenceJ. A. Schnautz, Ph.D. thesis, Oregon State University (1958).en_US
dc.identifier.citedreferenceS. P. Sutera, P. F. Maeder, and J. Kestin, J. Fluid Mech. 16, 497 (1963).en_US
dc.identifier.citedreferenceS. P. Sutera, J. Fluid Mech. 21, 513 (1965).en_US
dc.identifier.citedreferenceH. L. Dryden, G. B. Schubauer, W. C. Mock, Jr., and H. K. Skramstad, NACA Report 581 (1937).en_US
dc.identifier.citedreferenceThe resistance of the ribbon remains constant so that the rate of heat generation is constant over the heated portion of the plate. Calculations of radiation and convection1 indicate that the deviation of the heat transfer rate from constancy is about 0.5% per in. Thus the heat transfer rate is about 12% lower at the trailing edge than at the leading edge of the heated section.en_US
dc.identifier.citedreferenceJ. Hartnett, E. Eckert, and R. Birkebak, in Proceedings of the Sixth Midwestern Conference on Fluid Mechanics (Austin University Press, Austin, Texas, 1959), pp. 47–70.en_US
dc.identifier.citedreferenceS. Goldstein, Modern Developments in Fluid Dynamics (Oxford University Press, New York, 1938).en_US
dc.identifier.citedreferenceH. L. Dryden, NACA Report 562 (1936).en_US
dc.identifier.citedreferenceFigure 8 also shows that when the temperature rise was doubled to 40°F the change in Nusselt number was within the experimental error.en_US
dc.identifier.citedreferenceSee Ref. 17, Vol. II, p. 631.en_US
dc.identifier.citedreferenceOne of the questions to be answered is whether effects, similar to those found as a function of free‐stream turbulence, can be traced to velocity fluctuations induced over the forward portion of the cylinder by the unsteady flow in the wake. As a result of auxiliary tests, employing a streamlined afterbody which effectively eliminated the oscillations due to the wake, it was concluded that the effect is negligible. The agreement of the measured results in the clear tunnel with Squire’s theory,20 as shown in Fig. 11, supports this conclusion.en_US
dc.identifier.citedreferenceN. Piercy, E. Richardson, and H. Winny, Proc. Phys. Soc. (London) B69, 731 (1956).en_US
dc.identifier.citedreferenceA. M. Kuethe, W. W. Willmarth, and G. H. Crocker, in Proceedings of the 1961 Fluid Mechanics and Heat Transfer Institute (Stanford University Press, Stanford, California, 1961), pp. 10–22.en_US
dc.identifier.citedreferenceDetails of the growth of the Reynolds stress and other statistical properties were calculated by R. G. Deissler [Phys. Fluids 4, 1187 (1961)] for a homogeneous turbulent field in a uniform velocity gradient.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.