Show simple item record

Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface

dc.contributor.authorDrake, R. Paulen_US
dc.contributor.authorLeibrandt, D. R.en_US
dc.contributor.authorHarding, Eric C.en_US
dc.contributor.authorKuranz, Carolyn C.en_US
dc.contributor.authorBlackburn, M. A.en_US
dc.contributor.authorRobey, H. F.en_US
dc.contributor.authorRemington, Bruce A.en_US
dc.contributor.authorEdwards, M. J.en_US
dc.contributor.authorMiles, A. R.en_US
dc.contributor.authorPerry, T. S.en_US
dc.contributor.authorWallace, R. J.en_US
dc.contributor.authorLouis, H.en_US
dc.contributor.authorKnauer, J. P.en_US
dc.contributor.authorArnett, Daviden_US
dc.date.accessioned2010-05-06T20:56:22Z
dc.date.available2010-05-06T20:56:22Z
dc.date.issued2004-05en_US
dc.identifier.citationDrake, R. P.; Leibrandt, D. R.; Harding, E. C.; Kuranz, C. C.; Blackburn, M. A.; Robey, H. F.; Remington, B. A.; Edwards, M. J.; Miles, A. R.; Perry, T. S.; Wallace, R. J.; Louis, H.; Knauer, J. P.; Arnett, D. (2004). "Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface." Physics of Plasmas 11(5): 2829-2837. <http://hdl.handle.net/2027.42/69657>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69657
dc.description.abstractResults are reported from the first experiments to explore the evolution of the Rayleigh–Taylor (RT) instability from intentionally three-dimensional (3D) initial conditions at an embedded, decelerating interface in a high-Reynolds-number flow. The experiments used ∼ 5 kJ∼5kJ of laser energy to produce a blast wave in polyimide and/or brominated plastic having an initial pressure of ∼ 50 Mbars.∼50Mbars. This blast wave shocked and then decelerated the perturbed interface between the first material and lower-density C foam. This caused the formation of a decelerating interface with an Atwood number ∼ 2/3,∼2/3, producing a long-term positive growth rate for the RT instability. The initial perturbations were a 3D perturbation in an “egg-crate” pattern with feature spacings of 71 μm in two orthogonal directions and peak-to-valley amplitudes of 5 μm. The resulting RT spikes appear to overtake the shock waves, moving at a large fraction of the predeceleration, “free-fall” velocity. This result was unanticipated by prior simulations and models. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent8988265 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interfaceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Atmospheric Oceanic and Space Sciences, 2455 Hayward Street, Ann Arbor, Michigan 48109-2143en_US
dc.contributor.affiliationotherLawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550en_US
dc.contributor.affiliationotherUniversity of Rochester, 250 East River Road, Rochester, New York 14623en_US
dc.contributor.affiliationotherUniversity of Arizona, 5333 N. Camino Real, Tucson, Arizona 85718en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69657/2/PHPAEN-11-5-2829-1.pdf
dc.identifier.doi10.1063/1.1651492en_US
dc.identifier.sourcePhysics of Plasmasen_US
dc.identifier.citedreferenceL. Rayleigh, Scientific Papers II (Cambridge University Press, Cambridge, England, 1900).en_US
dc.identifier.citedreferenceS.G. Taylor, Proc. R. Soc. London, Ser. A PRLAAZ201, 192 (1950).en_US
dc.identifier.citedreferenceJ.D. Kilkenny, S.G. Glendinning, S.W. Haan et al., Phys. Plasmas PHPAEN1, 1379 (1994).en_US
dc.identifier.citedreferenceC.J. Pawley, S.E. Bodner, J.P. Dahlburg et al., Phys. Plasmas PHPAEN6, 565 (1999).en_US
dc.identifier.citedreferenceJ.P. Knauer, R. Betti, D.K. Bradley et al., Phys. Plasmas PHPAEN7, 338 (2000).en_US
dc.identifier.citedreferenceK.S. Budil, B.A. Remington, T.A. Peyser et al., Phys. Rev. Lett. PRLTAO76, 4536 (1996).en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B.A. Remington et al., Astrophys. J. Lett. AJLEAU478, L75 (1997).en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B.A. Remington et al., in Second Oak Ridge Symposium on Atomic and Nuclear Astrophysics, Oak Ridge, Tennessee, 1998.en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B.A. Remington, et al., Phys. Plasmas PHPAEN6, 2065 (1999).en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B.A. Remington et al., Astrophys. J., Suppl. APJSA2127, 365 (2000).en_US
dc.identifier.citedreferenceJ.O. Kane, H.F. Robey, B.A. Remington et al., Phys. Rev. E PLEEE863, 055401(R) (2001).en_US
dc.identifier.citedreferenceH.F. Robey, J.O. Kane, B.A. Remington et al., Phys. Plasmas PHPAEN8, 2446 (2001).en_US
dc.identifier.citedreferenceR.P. Drake, H.F. Robey, O.A. Hurricane et al., Astrophys. J. ASJOAB564, 896 (2002).en_US
dc.identifier.citedreferenceH.F. Robey, Y. Zhou, A.C. Buckingham et al., Phys. Plasmas PHPAEN10, 614 (2003).en_US
dc.identifier.citedreferenceA.R. Miles, D.G. Braun, M.J. Edwards et al., “Numerical simulation of supernova-relevant laser-driven hydrodynamics experiments on Omega,” Phys. Plasmas (to be published).en_US
dc.identifier.citedreferenceK. Kifonidis, T. Plewa, H.-T. Janka, and E. Muller, Astrophys. J. Lett. AJLEAU531, L123 (2000).en_US
dc.identifier.citedreferenceB. Fryxell, E. Muller, and D. Arnett, Astrophys. J. ASJOAB367, 619 (1991).en_US
dc.identifier.citedreferenceG. Tryggvason and S.O. Unverdi, Phys. Fluids A PFADEB2, 656 (1990).en_US
dc.identifier.citedreferenceJ.P. Dahlburg, J.H. Gardner, G.D. Doolen, and S.W. Haan, Phys. Fluids B PFBPEI5, 571 (1993).en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B.A. Remington et al., Astrophys. J. ASJOAB528, 989 (2000).en_US
dc.identifier.citedreferenceJ. Hecht, D. Ofer, U. Alon et al., Laser Part. Beams LPBEDA13, 423 (1995).en_US
dc.identifier.citedreferenceJ.P. Dahlburg, D.E. Fyfe, J.H. Gardner, S.W. Haan, and G.D. Doolen, Phys. Plasmas PHPAEN2, 2453 (1995).en_US
dc.identifier.citedreferenceY.-N. Young, H. Tufo, A. Dubey, and R. Rosner, J. Fluid Mech. JFLSA7447, 377 (2001).en_US
dc.identifier.citedreferenceD.L. Youngs, Phys. Fluids A PFADEB3, 1312 (1991).en_US
dc.identifier.citedreferenceD. Shvarts, U. Alon, D. Ofer, R.L. McCroy, and C.P. Verdon, Proceedings of the Fifth International Workshop on Compressible Tubulent Mixing (1995), p. 66.en_US
dc.identifier.citedreferenceM.M. Marinak, B.A. Remington, S.V. Weber et al., Phys. Rev. Lett. PRLTAO75, 3677 (1995).en_US
dc.identifier.citedreferenceM.M. Marinak, S.G. Glendinning, R.J. Wallace et al., Phys. Rev. Lett. PRLTAO80, 4426 (1998).en_US
dc.identifier.citedreferenceG. Dimonte and M. Schneider, Phys. Rev. E PLEEE854, 3740 (1996).en_US
dc.identifier.citedreferenceT.R. Boehly, R.S. Craxton, T.H. Hinterman et al., Rev. Sci. Instrum. RSINAK66, 508 (1995).en_US
dc.identifier.citedreferenceK.S. Budil, T.S. Perry, P.M. Bell et al., Rev. Sci. Instrum. RSINAK67, 485 (1996).en_US
dc.identifier.citedreferenceJ.T. Larsen and S.M. Lane, J. Quant. Spectrosc. Radiat. Transf. JQSRAE51, 179 (1994).en_US
dc.identifier.citedreferenceL.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).en_US
dc.identifier.citedreferenceD. Oron, L. Arazi, D. Kartoon et al., Phys. Plasmas PHPAEN8, 2883 (2001).en_US
dc.identifier.citedreferenceG. Dimonte, Phys. Plasmas PHPAEN7, 2255 (2000).en_US
dc.identifier.citedreferenceB.I. Jun, T.W. Jones, and M.L. Norman, Astrophys. J. Lett. AJLEAU468, L59 (1996).en_US
dc.identifier.citedreferenceA.R. Miles, M.J. Edwards, and H.F. Robey, “The effect of a short-wavelength mode on the nonlinear evolution of a long-wavelength perturbation driven by a strong blast wave,” Proceedings of the Third International Conference on Inertial Fusion Sciences and Applications, September 2003 (in press).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.