Show simple item record

Small particle size distributions from mobility measurements

dc.contributor.authorSanders, T. M.en_US
dc.contributor.authorForrest, S. R.en_US
dc.date.accessioned2010-05-06T20:57:28Z
dc.date.available2010-05-06T20:57:28Z
dc.date.issued1989-10-01en_US
dc.identifier.citationSanders, T. M.; Forrest, S. R. (1989). "Small particle size distributions from mobility measurements." Journal of Applied Physics 66(7): 3317-3323. <http://hdl.handle.net/2027.42/69669>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69669
dc.description.abstractWe report experiments performed on iron particles with radii in the range 40–100 Å, produced by pulsed evaporation from an electroplated tungsten filament in a cryogenic helium gas atmosphere. Flight times in electric fields of singly charged particles produced in the evaporation process yield values for gas velocity and charged particle mobility. Particle size distributions are determined both by electron microscopy and from the mobility. The latter method yields particle size distributions quickly and with good statistics, but with indicated radii larger by about 20 Å than those determined by electron microscopy. The discrepancy, which is most important for the smallest particles, is attributed to the effect of van der Waals interaction between the iron particles and the gas atoms. Comparison is made with theory, which connects the van der Waals interaction with the dielectric response functions. For particles in this size range, a van der Waals interaction determined from bulk iron data gives a satisfactory explanation of the discrepancy.en_US
dc.format.extent3102 bytes
dc.format.extent1131716 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSmall particle size distributions from mobility measurementsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumH. M. Randall Physics Laboratory, The University of Michigan, Ann Arbor, Michigan 48109‐1120en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69669/2/JAPIAU-66-7-3317-1.pdf
dc.identifier.doi10.1063/1.344127en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. R. Forrest, Ph.D. dissertation, University of Michigan. Ann Arbor, MI, 1979.en_US
dc.identifier.citedreferenceA brief account has been given in T. M. Sanders, Jr. and S. R. Forrest, Bull. Am. Phys. Soc. 26, 563 (1981).en_US
dc.identifier.citedreferenceS. R. Forrest and T. A. Witten, Jr., J. Phys. A 12, L109 (1979).en_US
dc.identifier.citedreferenceWe are indebted to H. McConnell for this suggestion.en_US
dc.identifier.citedreferenceE. W. McDaniel and E. A. Mason, Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).en_US
dc.identifier.citedreferenceN. Wada, Jpn. J. Appl. Phys. 6, 553 (1967); K. Kimoto and I. Nishida, Jpn. J. Appl. Phys. 6, 1047 (1967).en_US
dc.identifier.citedreferenceG. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).en_US
dc.identifier.citedreferenceSee Ref. 7.en_US
dc.identifier.citedreferenceK. T. Whitby and W. E. Clark, Tellus 18, 573 (1966).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Liquids and Gases (Wiley, New York, 1954), p. 203.en_US
dc.identifier.citedreferenceWe use the value 0.204 Å30.204Å3 for the static polarizability of a helium atom, α(0).α(0). See e.g., G. A. Cook, Argon, Helium, and the Rare Gases (Interscience, New York, 1961), p. 151.en_US
dc.identifier.citedreferenceJ. Gspann, Progr. Astronaut. and Aeronaut. 74, 959 (1981).en_US
dc.identifier.citedreferenceG. Akinci and J. A. Northby, Phys. Rev. Lett. 42, 573 (1979).en_US
dc.identifier.citedreferenceE. M. Lifshitz and L. P. Pitaevskii, in Statistical Physics, Vol. 9 of Course of Theoretical Physics, edited by L. D. Landau and E. M. Lifshitz (Pergamon, New York, 1980), Part 2, See. 82, p. 342.en_US
dc.identifier.citedreferenceE. S. Sabisky and C. R. Anderson, Phys. Rev. A 7, 790 (1973).en_US
dc.identifier.citedreferenceW. L. Wiese, M. W. Smith, and B. M. Glennon, Eds., Atomic Transition Probabilities, National Standard Reference Data Series (National Bureau of Standards, Washington, DC, 1966), Vol. 1, p. 11.en_US
dc.identifier.citedreferenceC. Wehenkel and B. Gauthé, Phys. Status Solidi B 64, 515 (1974).en_US
dc.identifier.citedreferenceSimilar results have been obtained by Gspann (Ref. 12).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.