Show simple item record

Formation of buried TiN in glass by ion implantation to reduce solar load

dc.contributor.authorWas, Gary S.en_US
dc.contributor.authorRotberg, V. H. (Victor H.)en_US
dc.contributor.authorPlatts, Dennisen_US
dc.contributor.authorBomback, Johnen_US
dc.contributor.authorBenoit, Roberten_US
dc.date.accessioned2010-05-06T20:58:23Z
dc.date.available2010-05-06T20:58:23Z
dc.date.issued1996-09-01en_US
dc.identifier.citationWas, Gary S.; Rotberg, Victor; Platts, Dennis; Bomback, John; Benoit, Robert (1996). "Formation of buried TiN in glass by ion implantation to reduce solar load." Journal of Applied Physics 80(5): 2768-2773. <http://hdl.handle.net/2027.42/69679>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69679
dc.description.abstractTi and N were implanted into soda lime glass to doses up to 4.5×1017 cm−2 to reduce solar load and infrared transmission. Analysis of the Ti+N implant distributions by Rutherford backscattering spectrometry and x‐ray photoelectron spectroscopy (XPS) revealed profiles which closely followed each other as designed by the selection of implant energies. XPS, x‐ray diffraction, and selected area electron diffraction in transmission electron microscopy also confirmed the existence of a crystalline B1‐type, cubic TiN layer, 140 nm wide, at doses greater than 9×1016 cm−2. Optical measurements showed that the fraction of infrared radiation reflected was increased by almost a factor of 4 compared to an increase of 1.8 in the visible region. The percentage of the total solar energy rejected reached 80% at the highest dose, indicating that the buried TiN layer is highly effective in reducing solar energy transmission. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent541215 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleFormation of buried TiN in glass by ion implantation to reduce solar loaden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumGlass Division, Ford Motor Company, Dearborn, Michigan 48121en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69679/2/JAPIAU-80-5-2768-1.pdf
dc.identifier.doi10.1063/1.363194en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. K. Rai, R. S. Bhattacharya, and S. C. Kung, Mater. Lett. 13, 35 (1992).en_US
dc.identifier.citedreferenceP. Mazzoldi, F. Caccavale, E. Cattaruzza, A. Boscolo-Boscoletto, R. Bertoncello, A. Glisenti, G. Battaglin, and C. Geradi, Nucl. Instrum. Methods B 65, 367 (1992).en_US
dc.identifier.citedreferenceG. Battaglin, in Modification Induced by Irradiation in Glasses, edited by P. Mazzoldi (Elsevier, Amsterdam, 1992), p. 11.en_US
dc.identifier.citedreferenceR. Bertoncello, A. Glisenti, G. Granozzi, G. Battaglin, E. Cattaruzza, and P. Mazzoldi, Mater. Res. Soc. Symp. Proc. 268, 325 (1992).en_US
dc.identifier.citedreferenceE. P. EerNisse, J. Appl. Phys. 45, 167 (1974).en_US
dc.identifier.citedreferenceA. P. Webb, L. Allen, B. R. Edgar, A. J. Houghton, P. D. Towsend, and C. W. Pitt, J. Phys. D 8, 1567 (1975).en_US
dc.identifier.citedreferenceA. P. Webb and P. D. Towsend, J. Phys. D 9, 1343 (1976).en_US
dc.identifier.citedreferenceC. Wang, Y. Tao, and S. Wang, J. Non-Cryst. Solids 52, 589 (1982).en_US
dc.identifier.citedreferenceI. K. Naik, Appl. Phys. Lett. 43, 519 (1983).en_US
dc.identifier.citedreferenceI. K. Naik, Proc. SPIE 460, 56 (1984).en_US
dc.identifier.citedreferenceR. F. Haglund, Jr., H. C. Mogul, R. A. Weeks, and R. A. Zuhr, J. Non-Cryst. Solids 130, 126 (1991).en_US
dc.identifier.citedreferenceJ. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1984), p. 1.en_US
dc.identifier.citedreferenceL. R. Dolittle, Nucl. Instrum. Methods B 9, 334 (1985).en_US
dc.identifier.citedreferenceS. N. Bunker and A. J. Armini, Nucl. Instrum. Methods B 39, 7 (1989).en_US
dc.identifier.citedreferenceJ. C. Zwinkels, M. Noel, and C. X. Dodd, Appl. Opt. 33, 7941 (1994).en_US
dc.identifier.citedreferenceParry Moon, J. Franklin Inst. 203, 583 (1940).en_US
dc.identifier.citedreferenceProprietary code, Ford Motor Company, Glass Division, 15 000 Commerce Drive North, Dearborn, MI 48120.en_US
dc.identifier.citedreferenceL. Martina, Sol. Energy Mater. 15, 21 (1987).en_US
dc.identifier.citedreferenceH. Z. Wu, T. C. Chou, A. Mishra, D. R. Anderson, J. K. Lampert, and S. C. Gujrathi, Thin Solid Films 191, 55 (1990).en_US
dc.identifier.citedreferenceH. J. Beattie, Jr. and F. L. Ver Snyder, Trans. ASME 45, 397 (1953).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.