Show simple item record

Theoretical and experimental investigations of subpicosecond photoconductivity

dc.contributor.authorChamoun, S. N.en_US
dc.contributor.authorJoshi, R.en_US
dc.contributor.authorArnold, E. N.en_US
dc.contributor.authorGrondin, Robert Oscaren_US
dc.contributor.authorMeyer, K. E.en_US
dc.contributor.authorPessot, M.en_US
dc.contributor.authorMourou, Gerard A.en_US
dc.date.accessioned2010-05-06T21:00:37Z
dc.date.available2010-05-06T21:00:37Z
dc.date.issued1989-07-01en_US
dc.identifier.citationChamoun, S. N.; Joshi, R.; Arnold, E. N.; Grondin, R. O.; Meyer, K. E.; Pessot, M.; Mourou, G. A. (1989). "Theoretical and experimental investigations of subpicosecond photoconductivity." Journal of Applied Physics 66(1): 236-246. <http://hdl.handle.net/2027.42/69703>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69703
dc.description.abstractMonte Carlo methods are used to study photoconductive transients in gallium arsenide. It is demonstrated that working with presently established ranges for the Γ‐L coupling coefficient, the existence of a velocity overshoot at moderate fields cannot be exactly predicted. The role of negative velocity electrons in the initial transient for short wavelength excitation is also demonstrated. Details of an actual experiment are described and evaluated against a model which incorporates the Monte Carlo simulation into a transmission line structure with a frequency‐dependent characteristic impedance. The results demonstrate that an appropriately designed experiment can observe subpicosecond carrier transport transients.en_US
dc.format.extent3102 bytes
dc.format.extent2024979 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTheoretical and experimental investigations of subpicosecond photoconductivityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109‐1120en_US
dc.contributor.affiliationotherCenter for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287en_US
dc.contributor.affiliationotherCavendish Laboratory, University of Cambridge, Cambridge, United Kingdomen_US
dc.contributor.affiliationotherLaboratory for Laser Energetics, University of Rochester, Rochester, New York 14627en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69703/2/JAPIAU-66-1-236-1.pdf
dc.identifier.doi10.1063/1.343918en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. B. Hammond, Physica B 134, 475 (1985).en_US
dc.identifier.citedreferenceG. Mourou, K. Meyer, J. Whitaker, M. Pessot, R. Grondin, and C. Caruso, in Picosecond Electronics and Optoelectronics II, Vol. 24 in Springer Series in Electronics and Photonics (Springer, Berlin, 1987), p. 40.en_US
dc.identifier.citedreferenceM. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).en_US
dc.identifier.citedreferenceM. Osman and H. Grubin, Solid‐State Electron. 31, 471 (1988).en_US
dc.identifier.citedreferenceR. O. Grondin and M. J. Kann, Solid‐State Electron. 31, 567 (1988).en_US
dc.identifier.citedreferenceA. Evan Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).en_US
dc.identifier.citedreferenceG. M. Wysin, B. L. Smith, and A. Redondo (unpublished).en_US
dc.identifier.citedreferenceJ. G. Ruch, IEEE Trans. Electron Devices ED‐19, 652 (1972).en_US
dc.identifier.citedreferenceM. A. Osman and D. K. Ferry, J. Appl. Phys. 61, 5330 (1987).en_US
dc.identifier.citedreferenceH. D. Rees, IBM J. Res. Dev. 13, 537 (1969).en_US
dc.identifier.citedreferenceR. O. Grondin, P. A. Blakey, and J. R. East, IEEE Electron. Devices 31, 21 (1984).en_US
dc.identifier.citedreferenceD. Jones and H. D. Rees, J. Phys. C 6, 1781 (1973).en_US
dc.identifier.citedreferenceD. Jones and H. D. Rees, Electron. Lett. 8, 363 (1972).en_US
dc.identifier.citedreferenceG. Bernstein and D. K. Ferry, Superlattices and Microstructures 2, 373 (1986).en_US
dc.identifier.citedreferenceM. Heiblum, I. M. Anderson, and C. M. Knoedler, Appl. Phys. Lett. 49, 207 (1986).en_US
dc.identifier.citedreferenceJ. R. Hayes, A. F. J. Levi, and W. Wiegmann, Electron. Lett. 20, 851 (1984).en_US
dc.identifier.citedreferenceC. V. Shank, R. L. Fork, B. I. Greene, F. K. Reinhart, and R. A. Logan, Appl. Phys. Lett. 38, 104 (1981).en_US
dc.identifier.citedreferenceS. Ramo, Proc. IRE 27, 584 (1939).en_US
dc.identifier.citedreferenceW. Shockley, J. Appl. Phys. 9, 635 (1981).en_US
dc.identifier.citedreferenceP. M. Smith, M. Inoue, and J. Frey, Appl. Phys. Lett. 37, 797 (1980).en_US
dc.identifier.citedreferenceT. H. Windhorn, T. J. Roth, L. M. Zinkiewicz, O. L. Gaddy, and G. E. Stillman, Appl. Phys. Lett. 40, 513 (1982).en_US
dc.identifier.citedreferenceL. V. Keldysh, Sov. Phys. JETP 7, 778 (1958).en_US
dc.identifier.citedreferenceW. Potz, P. Kocevar, Phys. Rev. B 28, 7040 (1983).en_US
dc.identifier.citedreferenceJ. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Phys. Rev. Lett. 59, 2222 (1987).en_US
dc.identifier.citedreferenceD. H. Auston, IEEE J. Quantum Electron. QE‐19, 639 (1983).en_US
dc.identifier.citedreferenceJ. A. Valdmanis, G. A. Mourou, C. W. Gabel, IEEE J. Quantum Electron. QE‐19, 664, (1983).en_US
dc.identifier.citedreferenceS. Teitel and J. W. Wilkins, J. Appl. Phys. 53, 5006 (1982).en_US
dc.identifier.citedreferenceS. J. Allen, C. L. Allyn, H. M. Cox, F. DeRosa, and G. E. Mahoney, Appl. Phys. Lett. 42, 96 (1983).en_US
dc.identifier.citedreferenceE. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).en_US
dc.identifier.citedreferenceM. A. Osman, D. K. Ferri, Phys. Rev. B 36, 6018 (1987).en_US
dc.identifier.citedreferenceM. Rieger, P. Kocevar, P. Bordone, P. Lugli, and L. Reggiani, Solid‐State Electron. 31, 687 (1988).en_US
dc.identifier.citedreferenceD. E. Aspnes, Phys. Rev. B 14, 5331 (1976).en_US
dc.identifier.citedreferenceK. Brenan, and K. Hess, Phys. Rev. B 29, 5581 (1984).en_US
dc.identifier.citedreferenceA. J. Taylor, D. J. Erskine, and C. L. Tang, J. Opt. Am. B 2, 663 (1985).en_US
dc.identifier.citedreferenceV. N. Freire, A. R. Vasconcellos, and R. Luzzi, Solid State Commun. 66, 683 (1988).en_US
dc.identifier.citedreferenceK. E. Meyer, M. Pessot, G. Mourou, R. O. Grondin, and S. N. Chamoun, Appl. Phys. Lett. 53, 2254 (1988).en_US
dc.identifier.citedreferenceK. E. Meyer, Ph.D. dissertation, University of Rochester, 1988.en_US
dc.identifier.citedreferenceK. Meyer, and G. Mourou, in Picosecond Electronics and Optoelectronics, edited by G. Mourou, D. Bloom, and C. Lee (Springer, Berlin, 1985), Vol. 21.en_US
dc.identifier.citedreferenceJ. A. Valdmanis, Ph.D. dissertation, University of Rochester, 1983.en_US
dc.identifier.citedreferenceD. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).en_US
dc.identifier.citedreferenceE. N. Arnold, M.S. thesis, Arizona State University, 1988.en_US
dc.identifier.citedreferenceJ. F. Whitaker, R. Sobolewski, D. Dykaar, T. Hsiang, and G. Mourou, IEEE Trans. Microwave Theory Tech. MTT‐36, 277 (1988).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.