Show simple item record

Energy dissipation in a shear layer with suction

dc.contributor.authorDoering, Charles R.en_US
dc.contributor.authorSpiegel, Edward A.en_US
dc.contributor.authorWorthing, Rodney A.en_US
dc.date.accessioned2010-05-06T21:01:27Z
dc.date.available2010-05-06T21:01:27Z
dc.date.issued2000-08en_US
dc.identifier.citationDoering, Charles R.; Spiegel, Edward A.; Worthing, Rodney A. (2000). "Energy dissipation in a shear layer with suction." Physics of Fluids 12(8): 1955-1968. <http://hdl.handle.net/2027.42/69712>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69712
dc.description.abstractThe rate of viscous energy dissipation in a shear layer of incompressible Newtonian fluid with injection and suction is studied by means of exact solutions, nonlinear and linearized stability theory, and rigorous upper bounds. The injection and suction rates are maintained constant and equal and this leads to solutions with constant throughput. For strong enough suction, expressed in terms of the entry angle between the injection velocity and the boundaries, a steady laminar flow is nonlinearly stable for all Reynolds numbers. For a narrow range of small but nonzero angles, the laminar flow is linearly unstable at high Reynolds numbers. The upper bound on the energy dissipation rate—valid even for turbulent solutions of the Navier–Stokes equations—scales with viscosity in the same way as the laminar dissipation in the vanishing viscosity limit. For both the laminar and turbulent flows, the energy dissipation rate becomes independent of the viscosity for high Reynolds numbers. Hence the laminar energy dissipation rate and the largest possible turbulent energy dissipation rate for flows in this geometry differ by only a prefactor that depends only on the angle of entry. © 2000 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent179096 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnergy dissipation in a shear layer with suctionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109en_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109en_US
dc.contributor.affiliationotherDepartment of Astronomy, Columbia University, New York, New York 10027en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69712/2/PHFLE6-12-8-1955-1.pdf
dc.identifier.doi10.1063/1.870443en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceG. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1969).en_US
dc.identifier.citedreferenceJ. Frank, A. King, and D. Raine, Accretion Power in Astrophysics, Cambridge Astrophysics Series, Vol. 21 (Cambridge University Press, Cambridge, 1992).en_US
dc.identifier.citedreferenceL. Prandtl, “Ueber die ausgebildete Turbulenz,” Proc. 2nd Intern, Cong. Appl. Mech. Zurich (1926), p. 62.en_US
dc.identifier.citedreferenceH. Tenekes and J. Lumley, A First Course in Turbulence (MIT, Cambridge, MA, 1972).en_US
dc.identifier.citedreferenceJ. Nikuradse, “Strömungsgesetze in rauhen Rohren,” VDI-Forschungsheft 361 (1933).en_US
dc.identifier.citedreferenceD. Lathrop, J. Feinberg, and H. Swinney, “Transition to shear-driven turbulence in Couette-Taylor flow,” Phys. Rev. A PLRAAN46, 6390 (1992).en_US
dc.identifier.citedreferenceO. Cadot, Y. Couder, A. Daerr, S. Douady, and A. Tsinober, “Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring,” Phys. Rev. E PLEEE856, 427 (1997).en_US
dc.identifier.citedreferenceD. D. Joseph, “Stability of fluid motions,” Springer Tracts in Natural Philosophy (Springer-Verlag, Berlin, 1976).en_US
dc.identifier.citedreferenceW. V. R. Malkus, “Lectures on Turbulence,” in Notes on the 1960 Summer Study Program in Geophysical Fluid Dynamics, edited by E. A. Spiegel (Woods Hole Oceanographic Inst., 1960), Vol. II, pp. 1–68.en_US
dc.identifier.citedreferenceL. N. Howard, “Heat transport by turbulent convection,” J. Fluid Mech. JFLSA717, 405 (1963).en_US
dc.identifier.citedreferenceL. N. Howard, “Bounds on flow quantities,” Annu. Rev. Fluid Mech. ARVFA34, 473 (1972).en_US
dc.identifier.citedreferenceF. H. Busse, “The optimum theory of turbulence,” Adv. Appl. Mech. AAMCAY18, 77 (1978).en_US
dc.identifier.citedreferenceE. Hopf, “Ein allgemeiner endlichkeitssatz der hydrodynamik,” Math. Ann. MAANA3117, 764 (1941).en_US
dc.identifier.citedreferenceC. R. Doering and P. Constantin, “Energy dissipation in shear driven turbulence,” Phys. Rev. Lett. PRLTAO69, 1648 (1992).en_US
dc.identifier.citedreferenceC. R. Doering and P. Constantin, “Variational bounds on energy dissipation in incompressible flows: Shear flow,” Phys. Rev. E PLEEE849, 4087 (1994).en_US
dc.identifier.citedreferenceC. Marchioro, “Remark on the energy dissipation in shear driven turbulence,” Physica D PDNPDT74, 395 (1994).en_US
dc.identifier.citedreferenceP. Constantin and C. Doering, “Variational bounds on energy dissipation in incompressible flows: II. Channel flow,” Physica D PDNPDT82, 221 (1995).en_US
dc.identifier.citedreferenceT. Gebhardt, S. Grossmann, M. Holthaus, and M. Löhden, “Rigorous bound on the plane-shear-flow dissipation rate,” Phys. Rev. E PLEEE851, 360 (1995).en_US
dc.identifier.citedreferenceR. Nicodemus, S. Grossmann, and M. Holthaus, “Improved variational principle for bounds on energy dissipation in turbulent shear flow,” Physica D PDNPDT101, 178 (1997).en_US
dc.identifier.citedreferenceC. Doering and P. Constantin, “Variational bounds on energy dissipation in incompressible flows: III. Convection,” Phys. Rev. E PLEEE853, 5957 (1996).en_US
dc.identifier.citedreferenceR. R. Kerswell, “Unification of variational principles for turbulent shear flows: the background method of Doering–Constantin and the mean-fluctuation method of Howard–Busse,” Physica D PDNPDT121, 175 (1998).en_US
dc.identifier.citedreferenceA. Cherhabili and U. Ehrenstein, “Finite-amplitude equilibrium states in plane Couette flow,” J. Fluid Mech. JFLSA7342, 159 (1997).en_US
dc.identifier.citedreferenceP. Drazin and W. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981).en_US
dc.identifier.citedreferenceL. M. Hocking, “Non-linear instability of the asymptotic suction velocity profile,” Q. J. Mech. Appl. Math. QJMMAV28, 341 (1974).en_US
dc.identifier.citedreferenceW. V. R. Malkus, “The heat transport and spectrum of thermal turbulence,” Proc. R. Soc. London, Ser. A PRLAAZ225, 196 (1954).en_US
dc.identifier.citedreferenceR. Nicodemus, S. Grossmann, and M. Holthaus, “The background flow method. Part 1. Constructive approach to bounds on energy dissipation,” J. Fluid Mech. JFLSA7363, 281 (1998).en_US
dc.identifier.citedreferenceX. Wang, “Time averaged energy dissipation rate for shear driven flows,” Physica D PDNPDT99, 555 (1997).en_US
dc.identifier.citedreferenceK. Min and R. Leptow, “Circular Couette flow with pressure-driven axial flow and a porous inner cylinder,” Exp. Fluids EXFLDU17, 190 (1994).en_US
dc.identifier.citedreferenceY. Sumitani and N. Kasagi, “Direct numerical simulation of turbulent transport with uniform wall injection and suction,” AIAA J. AIAJAH33, 1220 (1995).en_US
dc.identifier.citedreferenceR. Temam and X. Wang, “Boundary layers associated with incompressible Navier–Stokes equations: The noncharacteristic boundary case” (in press).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.