Show simple item record

Synthesis and magnetic properties of CoPt nanoparticles

dc.contributor.authorSun, Xiangchengen_US
dc.contributor.authorJia, Z. Y.en_US
dc.contributor.authorHuang, Y. H.en_US
dc.contributor.authorHarrell, J. W.en_US
dc.contributor.authorNikles, D. E.en_US
dc.contributor.authorSun, K.en_US
dc.contributor.authorWang, L. M.en_US
dc.date.accessioned2010-05-06T21:01:38Z
dc.date.available2010-05-06T21:01:38Z
dc.date.issued2004-06-01en_US
dc.identifier.citationSun, Xiangcheng; Jia, Z. Y.; Huang, Y. H.; Harrell, J. W.; Nikles, D. E.; Sun, K.; Wang, L. M. (2004). "Synthesis and magnetic properties of CoPt nanoparticles." Journal of Applied Physics 95(11): 6747-6749. <http://hdl.handle.net/2027.42/69714>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69714
dc.description.abstractHigh magnetocrystalline anisotropy CoPt particles with an average size of 8 nm were synthesized by the superhydride reduction of CoCl2CoCl2 and Pt(acac)2Pt(acac)2 at a high temperature. As-made particles showed a disordered face-centered cubic lattice and were superparamagnetic. Upon heat treatment at temperatures above 600 °C, the particles transformed to the L10L10 phase, as indicated by the appearance of the superlattice peaks in the x-ray diffraction and high magnetocrystalline anisotropy. The temperature dependence of the coercivity of nanoparticles annealed at 650 °C was measured from 10 to 300 K and analyzed using a Sharrock formula. After annealing at 650 °C, the anisotropy of the nanoparticles was K∼1.7×107 erg/cm3.K∼1.7×107 erg/cm3. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent228967 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSynthesis and magnetic properties of CoPt nanoparticlesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherCenter for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69714/2/JAPIAU-95-11-6747-1.pdf
dc.identifier.doi10.1063/1.1667441en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceC. J. Lin and H. V. Do, IEEE Trans. Magn. IEMGAQ26, 1700 (1990).en_US
dc.identifier.citedreferenceD. Weller, H. Brandle, G. Gorman, C. J. Lin, and H. Notarys, Appl. Phys. Lett. APPLAB61, 2726 (1992).en_US
dc.identifier.citedreferenceD. Weller and A. Moser, IEEE Trans. Magn. IEMGAQ35, 4423 (1999).en_US
dc.identifier.citedreferenceS. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science SCIEAS287, 1989 (2000).en_US
dc.identifier.citedreferenceS. Sun, S. Anders, T. Thomson, J. E. E. Gaglin, M. F. Toney, H. F. Haman, C. B. Murray, and B. D. Terris, J. Phys. Chem. B JPCBFK107, 5419 (2003).en_US
dc.identifier.citedreferenceM. Yu, Y. Liu, and D. J. Sellmyer, J. Appl. Phys. JAPIAU87, 6959 (2000).en_US
dc.identifier.citedreferenceS. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, Appl. Phys. Lett. APPLAB73, 3453 (1998).en_US
dc.identifier.citedreferenceM. Albrecht, M. Maret, A. Majer, F. Treubel, B. Riedlinger, U. Mazur, G. Schatz, and S. Anders, J. Appl. Phys. JAPIAU91, 8153 (2002).en_US
dc.identifier.citedreferenceM. Maret, M. C. Cadeville, R. Ponsot, A. Herr, E. Beaureparie, and C. Monier, J. Magn. Magn. Mater. JMMMDC166, 45 (1997).en_US
dc.identifier.citedreferenceP. W. Rooney, A. L. Shapiro, M. Q. Tran, and F. Hellman, Phys. Rev. Lett. PRLTAO75, 1843 (1995).en_US
dc.identifier.citedreferenceG. R. Harp, D. Weller, T. A. Rabedeau, R. F. C. Farrow, and M. F. Toney, Phys. Rev. Lett. PRLTAO71, 2493 (1993).en_US
dc.identifier.citedreferenceA. C. C. Yu, M. Mizuno, Y. Sasaki, H. Kondo, and K. Hiraga, Appl. Phys. Lett. APPLAB81, 3768 (2002).en_US
dc.identifier.citedreferenceC. N. Chinnasamy, B. Jeyadeven, K. Shinoda, and K. Tohji, J. Appl. Phys. JAPIAU93, 7583 (2003).en_US
dc.identifier.citedreferenceJ. Fang, L. D. Tung, K. L. Stokes, J. He, D. Caruntu, W. Zhou, and C. J. O’Connor, J. Appl. Phys. JAPIAU91, 8816 (2002).en_US
dc.identifier.citedreferenceD. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. Doerner, IEEE Trans. Magn. IEMGAQ36, 10 (2000).en_US
dc.identifier.citedreferenceM. P. Sharrock and J. T. McKinney, IEEE Trans. Magn. IEMGAQ17, 3030 (1981).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.