Show simple item record

Control of composition and structure for molybdenum nitride films synthesized using ion beam assisted deposition

dc.contributor.authorMudholkar, M. S.en_US
dc.contributor.authorThompson, L. T.en_US
dc.date.accessioned2010-05-06T21:02:11Z
dc.date.available2010-05-06T21:02:11Z
dc.date.issued1995-05-15en_US
dc.identifier.citationMudholkar, M. S.; Thompson, L. T. (1995). "Control of composition and structure for molybdenum nitride films synthesized using ion beam assisted deposition." Journal of Applied Physics 77(10): 5138-5143. <http://hdl.handle.net/2027.42/69720>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69720
dc.description.abstractThe purpose of the research described in this article was to synthesize molybdenum nitride films with well‐defined structures and stoichiometries using ion beam assisted deposition (IBAD). Approximately 400 nm thick films were prepared by the evaporative deposition of molybdenum while simultaneously bombarding the growing film with low energy (250–1000 eV) nitrogen ions. The effects of ion‐to‐atom arrival rate ratio, ion angle of incidence, and ion energy on the film composition and phase constituents were examined. The film nitrogen to molybdenum stoichiometry increased linearly with increasing arrival rate ratio irrespective of the ion energy and varied significantly with changes in the ion angle of incidence. The latter was interpreted based on sputtering and reflection effects. The phase constituents were functions of all of the deposition parameters investigated. We propose that a single parameter, the effective energy density per deposited atom, can account for the effects of ion energy, mass, and angle of incidence. The effective energy density is approximately the ion energy divided by the ion range. The range incorporates the effects of ion mass and angle of incidence, as well as the energy. For low energy ions the energy density per depositing atom is proportional to E1/2, a dependence that it shares with other models that have been developed to account for phase formation during IBAD. The advantage of the energy density treatment is that it has a more obvious influence on the temperature in the growth zone, a factor controlling phase formation. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent742726 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleControl of composition and structure for molybdenum nitride films synthesized using ion beam assisted depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69720/2/JAPIAU-77-10-5138-1.pdf
dc.identifier.doi10.1063/1.359257en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. C. Schlatter, S. T. Oyama, J. E. Metcalfe, and J. M. Lambert, Ind. Eng. Chem. Res. 27, 1648 (1988).en_US
dc.identifier.citedreferenceJ.-G. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, J. L. Dunning, and L. T. Thompson, Catal. Today 15, 201 (1992).en_US
dc.identifier.citedreferenceC. W. Colling and L. T. Thompson, J. Catal. 146, 193 (1994).en_US
dc.identifier.citedreferenceD. J. Sajkowski and S. T. Oyama, in Symposium on the Chemistry of W∕Mo Catalysis, 199th ACS National Meeting, Boston, Massachusetts, April 22–27, 1990, Prep. Am. Chem. Soc. Div. Pet. Chem. (1990).en_US
dc.identifier.citedreferenceE. J. Markel and J. W. Van Zee, J. Catal. 126, 6643 (1990).en_US
dc.identifier.citedreferenceB. G. Demczyk, J.-G. Choi, and L. T. Thompson, Appl. Surf. Sci. 78, 63 (1994).en_US
dc.identifier.citedreferenceJ.-G. Choi, J. R. Brenner, and L. T. Thompson, J. Catal. 153, (1995).en_US
dc.identifier.citedreferenceJ. K. Hirvonen, Mater. Sci. Rep. 6, 215 (1991).en_US
dc.identifier.citedreferenceF. A. Smidt, Inter. Mater. Rev. 35, 61 (1990).en_US
dc.identifier.citedreferenceD. Van Vechten, G. K. Hubler, and E. P. Donovan, Vacuum 36, 841 (1986).en_US
dc.identifier.citedreferenceL. R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1983).en_US
dc.identifier.citedreferenceD. Van Vechten, G. K. Hubler, E. P. Donovan, and F. D. Correll, J. Vac. Sci. Technol. A 8, 821 (1990).en_US
dc.identifier.citedreferenceG. K. Hubler, D. Van Vechten, E. P. Donovan, and C. A. Carosella, J. Vac. Sci. Technol. A 8, 831 (1990).en_US
dc.identifier.citedreferenceE. P. Donovan, G. K. Hubler, M. S. Mudholkar, and L. T. Thompson, Surf. Coat. Technol. 66, 499 (1994).en_US
dc.identifier.citedreferenceP. Wang, D. A. Thompson, and W. W. Smeltzer, Nucl. Instrum. Methods Phys. Res. B 7∕8, 97 (1985).en_US
dc.identifier.citedreferenceK. Kobayashi, S. Namba, T. Fujihana, Y. Dai, and M. Iwaki, Nucl. Instrum. Methods Phys. Res. B 33, 689 (1988).en_US
dc.identifier.citedreferenceY. Andoh, K. Ogata, H. Yamaki, and S. Sakai, Nucl. Instrum. Methods Phys. Res. B 39, 158 (1989).en_US
dc.identifier.citedreferenceG. N. Van Wyk and H. J. Smith, Nucl. Instrum. Methods 170, 433 (1980).en_US
dc.identifier.citedreferenceK. S. Grabowski, R. A. Kant, and S. B. Quadri, Mater. Res. Soc. Symp. Proc. 128, 279 (1989).en_US
dc.identifier.citedreferenceD. Dobrev, Thin Solid Films 92, 41 (1982).en_US
dc.identifier.citedreferenceR. M. Bradley, J. M. E. Harper, and D. A. Smith, J. Appl. Phys. 60, 4160 (1986).en_US
dc.identifier.citedreferenceR. M. Bradley, J. M. E. Harper, and D. A. Smith, J. Vac. Sci. Technol. A 5, 1792 (1987).en_US
dc.identifier.citedreferenceD. R. McKenzie, J. Vac. Sci. Technol. B 11, 1928 (1993).en_US
dc.identifier.citedreferenceN. Savvides, Thin Solid Films 163, 13 (1988).en_US
dc.identifier.citedreferenceY. Cong, R. W. Collins, R. Messier, K. Vedam, G. F. Epps, and H. Windischmann, J. Vac. Sci. Technol. A 9, 1123 (1991).en_US
dc.identifier.citedreferenceP. Ziemann and E. Kay, J. Vac. Sci. Technol. A 1, 512 (1983).en_US
dc.identifier.citedreferenceE. Kay, F. Parmigiani, and W. Parrish, J. Vac. Sci. Technol. A 5, 44 (1987).en_US
dc.identifier.citedreferenceD. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).en_US
dc.identifier.citedreferenceJ. D. Targove and H. A. Macleod, Appl. Opt. 27, 3779 (1988).en_US
dc.identifier.citedreferenceH. Windischmann, J. Appl. Phys. 62, 1800 (1987).en_US
dc.identifier.citedreferenceH. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).en_US
dc.identifier.citedreferenceC. K. Hwangbo, L. J. Lingg, J. P. Lehan, H. A. Macleod, J. L. Makous, and S. Y. Kim, Appl. Opt. 28, 2769 (1989).en_US
dc.identifier.citedreferenceS. M. Rossnagel and J. J. Cuomo, Thin Solid Films 171, 143 (1989).en_US
dc.identifier.citedreferenceD. W. Hoffman and M. R. Gaerttner, J. Vac. Sci. Technol. 17, 425 (1980).en_US
dc.identifier.citedreferenceD. J. Skyrme, Nucl. Instrum. Methods 57, 61 (1967).en_US
dc.identifier.citedreferenceM. A. Kumakhov and F. F. Komarov, Energy Loss and Ion Ranges in solids (Gordon and Breach, New York, 1981), pp. 262–266.en_US
dc.identifier.citedreferenceD. R. Brighton and G. K. Hubler, Nucl. Instrum. Methods Phys. Res. B 28, 527 (1987).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.