Show simple item record

Ultrafast nonequilibrium carrier relaxation in single‐crystal Nd1.85Ce0.15CuO4−y

dc.contributor.authorLiu, Yongqianen_US
dc.contributor.authorWhitaker, John F.en_US
dc.contributor.authorUher, Ctiraden_US
dc.contributor.authorPeng, Jian‐liangen_US
dc.contributor.authorLi, Z. Y.en_US
dc.contributor.authorGreene, R. L.en_US
dc.date.accessioned2010-05-06T21:02:23Z
dc.date.available2010-05-06T21:02:23Z
dc.date.issued1993-08-16en_US
dc.identifier.citationLiu, Yongqian; Whitaker, John F.; Uher, Ctirad; Peng, Jian‐Liang; Li, Z. Y.; Greene, R. L. (1993). "Ultrafast nonequilibrium carrier relaxation in single‐crystal Nd1.85Ce0.15CuO4−y." Applied Physics Letters 63(7): 979-981. <http://hdl.handle.net/2027.42/69722>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69722
dc.description.abstractWe present a temperature‐dependent investigation of the femtosecond relaxation dynamics of the n‐type superconductor Nd1.85Ce0.15CuO4−y using ultrashort pulses from a Ti‐sapphire laser in a transient absorption, pump‐probe configuration. The energy relaxation time of the single crystals in the normal state was observed to increase by over an order of magnitude as the critical temperature was approached. This behavior has been modeled by the scattering of electrons with two‐dimensional phonons. In the superconducting state, an increase and subsequent saturation of the relaxation time has been discerned. A possible reason for this is a complex interplay among the characteristic relaxation times, including scattering and recombination of quasiparticles optically excited by ultrashort laser pulses and order parameter relaxation close to Tc.en_US
dc.format.extent3102 bytes
dc.format.extent467620 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleUltrafast nonequilibrium carrier relaxation in single‐crystal Nd1.85Ce0.15CuO4−yen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Center for Ultrafast Optical Science, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherCenter for Superconductivity Research, University of Maryland, College Park, Maryland 20742en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69722/2/APPLAB-63-7-979-1.pdf
dc.identifier.doi10.1063/1.109864en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceNonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin (North-Holland, New York, 1986), Chap. 9.en_US
dc.identifier.citedreferenceG. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).en_US
dc.identifier.citedreferenceG. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll, and S. H. Lion, Phys. Rev. Lett. 65, 3445 (1990).en_US
dc.identifier.citedreferenceJ. M. Chwalek, C. Uher, J. F. Whitaker, G. A. Mourou, J. Agostinelli, and M. Lelental, Appl. Phys. Lett. 57, 1696 (1990).en_US
dc.identifier.citedreferenceS. G. Han, Z. V. Vardeny, K. S. Wong, O. G. Symko, and G. Koren, Phys. Rev. Lett. 65, 2708 (1990).en_US
dc.identifier.citedreferenceR. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).en_US
dc.identifier.citedreferenceD. W. Face, S. D. Brorson, A. Kazeroonian, J. S. Moodera, T. K. Cheng, G. L. Doll, M. S. Dresselhaus, G. Dresselhaus, E. P. Ippen, T. Venkatesan, X. D. Wu, and A. Inam, IEEE Trans. Magn. 27, 1556 (1991).en_US
dc.identifier.citedreferenceY. Tokuar, H. Takagi, and S. Uchida, Nature 337, 345 (1989); M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1957).en_US
dc.identifier.citedreferenceJ. L. Peng, Z. Y. Li, and R. L. Green, Physica C 177, 79 (1991).en_US
dc.identifier.citedreferenceS. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43, 7942 (1991).en_US
dc.identifier.citedreferenceS. J. Hagen, X. Q. Xu, W. Jiang, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 45, 515 (1992).en_US
dc.identifier.citedreferenceP. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).en_US
dc.identifier.citedreferenceM. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 276. We use a 2D phonon spectrum to derive the 2D equation.en_US
dc.identifier.citedreferenceD. M. Ginsberg, Physical Properties of High Temperatures, Suppl. II (World Scientific, Singapore, 1990), p. 33.en_US
dc.identifier.citedreferenceS. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B 14, 4854 (1976).en_US
dc.identifier.citedreferenceD. H. Reitze, A. M. Weiner, A. Inam, and S. Etemad, Phys. Rev. B 46, 14309 (1992).en_US
dc.identifier.citedreferenceS. G. Han, Z. V. Vardeny, O. G. Symko, and G. Koren, Phys. Rev. Lett. 67, 1053 (1991).en_US
dc.identifier.citedreferenceG. L. Eesley, J. Heremans, M. S. Meyer, and G. L. Doll, Phys. Rev. Lett. 67, 1054 (1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.