Show simple item record

Neodymium‐doped glass channel waveguide laser containing an integrated distributed Bragg reflector

dc.contributor.authorRoman, J. E.en_US
dc.contributor.authorWinick, Kim A.en_US
dc.date.accessioned2010-05-06T21:05:03Z
dc.date.available2010-05-06T21:05:03Z
dc.date.issued1992-12-07en_US
dc.identifier.citationRoman, J. E.; Winick, K. A. (1992). "Neodymium‐doped glass channel waveguide laser containing an integrated distributed Bragg reflector." Applied Physics Letters 61(23): 2744-2746. <http://hdl.handle.net/2027.42/69747>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69747
dc.description.abstractAn integrated, distributed Bragg reflector laser in a Nd‐doped, glass, channel waveguide is reported for the first time. The waveguide is fabricated using Ag+ thermal ion exchange in a soda‐lime‐silicate‐glass containing 2% Nd2O3 by weight. The distributed Bragg reflector grating is produced holographically in photoresist and then etched into the waveguide using argon ion milling. The device lases in a single longitudinal mode with a pump threshold of 50 mW and a slope efficiency of 1%.en_US
dc.format.extent3102 bytes
dc.format.extent381852 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNeodymium‐doped glass channel waveguide laser containing an integrated distributed Bragg reflectoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumElectrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69747/2/APPLAB-61-23-2744-1.pdf
dc.identifier.doi10.1063/1.108076en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceY. Hibino et al., IEEE Photon. Technol. Lett. 1, 349 (1989).en_US
dc.identifier.citedreferenceN. A. Sanford, K. J. Malone, and D. R. Larson, Opt. Lett. 15, 336 (1990).en_US
dc.identifier.citedreferenceE. Lallier, J.-P. Pocholle, M. Papuchon, Q. He, M. De Micheli, D. B. Ostrowsky, G. Grezes-Besset, and E. Pelletier, Electron. Lett. 27, 936 (1991).en_US
dc.identifier.citedreferenceE. K. Mwarani, D. M. Murphy, M. Hempstead, L. Reekie, and J. S. Wilkinson, Photonics Technol. Lett. 4, 235 (1992).en_US
dc.identifier.citedreferenceI. M. Juancey, L. Reekie, J. E. Townsend, D. N. Payne, and C. J. Rowe, Electron. Lett. 24, 24 (1988).en_US
dc.identifier.citedreferenceG. A. Ball, W. W. Morey, and J. P. Waters, Electron. Lett. 26, 1829 (1990).en_US
dc.identifier.citedreferenceG. A. Ball, W. W. Morey, and W. H. Glenn, Photon. Technol. Lett. 3, 613 (1991).en_US
dc.identifier.citedreferenceK. A. Winick and J. E. Roman, Annual Optical Society of America Meeting, Albuquerque, NM, Sept. 1992 (unpublished), Postdeadline Paper PD9.en_US
dc.identifier.citedreferenceL. Li, M. Xu, G. Stegeman, and C. T. Seaton, Proc. SPIE 835, 72 (1987).en_US
dc.identifier.citedreferenceR. K. Lagu and R. V. Ramaswamy, J. Lightwave Technol. LT-4, 176 (1986).en_US
dc.identifier.citedreferenceJ. E. Gortych and D. G. Hall, Quantum Electron. QE-22, 892 (1986).en_US
dc.identifier.citedreferenceGuided-Wave Optoelectronics, edited by T. Tamir (Springer, New York, 1988), Chap. 2.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.