Show simple item record

Manganese Disulfide (Hauerite) and Manganese Ditelluride. Thermal Properties from 5 to 350°K and Antiferromagnetic Transitions

dc.contributor.authorWestrum, Edgar F. Jr.en_US
dc.contributor.authorGrønvold, Fredriken_US
dc.date.accessioned2010-05-06T21:06:44Z
dc.date.available2010-05-06T21:06:44Z
dc.date.issued1970-04-01en_US
dc.identifier.citationWestrum, Edgar F.; Grønvold, Fredrik (1970). "Manganese Disulfide (Hauerite) and Manganese Ditelluride. Thermal Properties from 5 to 350°K and Antiferromagnetic Transitions." The Journal of Chemical Physics 52(7): 3820-3826. <http://hdl.handle.net/2027.42/69763>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69763
dc.description.abstractThe heat capacities of manganese disulfide and manganese ditelluride were determined by adiabatic calorimetry in the range 5–350°K. Lambda‐type transitions are present in both compounds with maxima at 47.93°K for MnS2 and at 83.0°K for MnTe2. Entropies, enthalpies, and Gibbs energy function values are calculated and tabulated. At 298.15°K they are: S°  =  23.88cal/mole⋅°K,H° − H0°  =  3384cal/mole,− [(G° − H0°) / T]  =  12.258cal/mole⋅°KS°=23.88cal∕mole⋅°K,H°−H0°=3384cal∕mole,−[(G°−H0°)∕T]=12.258cal∕mole⋅°K for MnS2 and 34.66, 4416, and 19.847 for MnTe2. The clearly cooperative entropy increments are only 0.71 cal/mole⋅°K for MnS2 and 0.80 for MnTe2. Available magnetic susceptibility data are interpreted in terms of zero‐field splitting of the 6S5/26S5∕2 state of the manganese 3d53d5 electrons. The resulting contributions to the heat capacity are evaluated. At 298°K the combined λ‐transitional and Schottky contributions to the entropy are 2.6 and 2.4 cal/mole⋅°K for MnS2 and MnTe2, respectively.en_US
dc.format.extent3102 bytes
dc.format.extent417379 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleManganese Disulfide (Hauerite) and Manganese Ditelluride. Thermal Properties from 5 to 350°K and Antiferromagnetic Transitionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.contributor.affiliationotherInstitute of Inorganic Chemistry, University of Oslo, Blindern, Norwayen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69763/2/JCPSA6-52-7-3820-1.pdf
dc.identifier.doi10.1063/1.1673563en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceP. P. Ewald and W. Friedrich, Ann. Phys. 44, 1183 (1914); P. P. Ewald, Physik. Z. 15, 399 (1914).en_US
dc.identifier.citedreferenceI. Oftedal, Z. Physik. Chem. 135, 291 (1928).en_US
dc.identifier.citedreferenceN. Elliott, J. Am. Chem. Soc. 59, 1958 (1937).en_US
dc.identifier.citedreferenceH. Haraldsen and W. Klemm, Z. Anorg. Allgem. Chem. 223, 409 (1935).en_US
dc.identifier.citedreferenceJ. M. Hastings, N. Elliott, and L. M. Corliss, Phys. Rev. 115, 13 (1959); see also J. Appl. Phys. 29, 392 (1958); H. Haraldsen, “Die Chalkogenide der Ubergangselemente” in Experientia Supplementum VII, XVIth International Congress of Pure and Applied Chemistry, Paris, 1957 (Birkhäuser Verlag, Basel, 1957), pp. 165–82en_US
dc.identifier.citedreferenceL. M. Corliss and J. M. Hastings, J. Phys. (Paris) 25, 557 (1964).en_US
dc.identifier.citedreferenceL. Neél, Ann. Phys. 3, 137 (1948); see also J. S. Smart, Effective Field Theories of Magnetism (W. B. Saunders, Co., Philadelphia, Pa., 1966).en_US
dc.identifier.citedreferenceP. W. Anderson, Phys. Rev. 79, 705 (1950).en_US
dc.identifier.citedreferenceValues by earlier investigators expressed in kX units have been transformed to angstroms by multiplication by the factor 1.00202.en_US
dc.identifier.citedreferenceF. Offner, Z. Krist. 89, 182 (1934); see also L. Pauling and M. L. Huggins, 87, 205 (1934).en_US
dc.identifier.citedreferenceW. Biltz and F. Wiechmann, Z. Anorg. Allgem. Chem. 228, 268 (1936).en_US
dc.identifier.citedreferenceR. B. Gordon, Am. Mineralogist 36, 918 (1951).en_US
dc.identifier.citedreferenceS. Furuseth and A. Kjekshus, Acta Chem. Scand. 19, 1405 (1965).en_US
dc.identifier.citedreferenceS. Furberg, Acta Chem. Scand. 7, 693 (1953).en_US
dc.identifier.citedreferenceA. Sawoka and S. Miyhara, J. Phys. Soc. Japan 20, 2087 (1965).en_US
dc.identifier.citedreferenceE. F. Westrum, Jr., J. Chem. Educ. 39, 443 (1962).en_US
dc.identifier.citedreferenceB. H. Justice, doctoral dissertation, University of Michigan, Ann Arbor, Mich., 1961. U.S.A.E.C. Rept. TID‐12722, 1961.en_US
dc.identifier.citedreferenceM. S. Lin, “A study on the Antiferromagnetic Transitions of Three Ionic Compounds at Low Temperatures,” dissertation, University of Michigan Ann Arbor, Mich, 1964; Dissertation Abstr. 25, 7159 (1965).en_US
dc.identifier.citedreferenceL. Landau, Phys. Z. Sowjet. 11, 26, 545 (1937); Collected Papers of L. D. Landau (Gordon and Breach Science Publishers, Inc., New York, 1967), p. 193; L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Inc., New York, 1958).en_US
dc.identifier.citedreferenceJ. O. Dimmock, Phys. Rev. 130, 1334 (1964).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.