Show simple item record

Quantum point contact transistor with high gain and charge sensitivity

dc.contributor.authorKurdak, Ç.en_US
dc.contributor.authorFarina, L. A.en_US
dc.contributor.authorLewis, K. M.en_US
dc.date.accessioned2010-05-06T21:06:55Z
dc.date.available2010-05-06T21:06:55Z
dc.date.issued2001-03-15en_US
dc.identifier.citationKurdak, Ç.; Farina, L.; Lewis, K. M. (2001). "Quantum point contact transistor with high gain and charge sensitivity." Journal of Applied Physics 89(6): 3453-3457. <http://hdl.handle.net/2027.42/69765>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69765
dc.description.abstractWe analyze the potential performance of quantum point contact (QPC) devices in charge detection applications. For the standard QPC structure we show that the charge sensitivity is strongly dependent on gate geometry and can be close to the quantum limit, and that the gain parameter is less than one under bias conditions where the charge sensitivity is optimized. We propose a novel QPC device consisting of two split gates for defining the QPC and a third gate which can be used to filter out hot electrons that are emitted from the QPC. We show that this proposed device can have a high gain and a charge sensitivity close to that of single electron transistors. The device can be realized using high quality GaAs/AlGaAs with a two-dimensional electron gas and standard nanofabrication techniques. Unlike single electron transistors, the gain of the proposed device does not depend on the charge configuration near the active region of the device. Therefore the device can be used as an electrometer without a feedback charged locked loop and multiple devices can easily be integrated. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent218726 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleQuantum point contact transistor with high gain and charge sensitivityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69765/2/JAPIAU-89-6-3453-1.pdf
dc.identifier.doi10.1063/1.1344584en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceB. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. PRLTAO60, 848 (1988).en_US
dc.identifier.citedreferenceH. van Houten, C. W. J. Beenakker, and B. J. van Wees, Semicond. Semimetals SESEES35, 9 (1992).en_US
dc.identifier.citedreferenceS. Datta, Electronic Transport in Mesoscopic Ssytems (Cambridge University, Cambridge, UK, 1995).en_US
dc.identifier.citedreferenceK. K. Ko, E. W. Berg, and S. W. Pang, J. Vac. Sci. Technol. B JVTBD914, 3663 (1996).en_US
dc.identifier.citedreferenceL. H. Chen, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard (unpublished).en_US
dc.identifier.citedreferenceY. P. Li, D. C. Tsui, J. J. Heremans, J. A. Simmons, and G. W. Weimann, Appl. Phys. Lett. APPLAB57, 774 (1990).en_US
dc.identifier.citedreferenceC. Dekker, A. J. Sholten, F. Liefrink, R. Eppenga, H. van Houten, and C. T. Foxon, Phys. Rev. Lett. PRLTAO66, 2148 (1991).en_US
dc.identifier.citedreferenceT. Sakamoto, Y. Nakamura, and K. Nakamura, Appl. Phys. Lett. APPLAB67, 2220 (1995).en_US
dc.identifier.citedreferenceÇ. Kurdak, C.-J. Chen, D. C. Tsui, S. Parihar, S. Lyon, and G. W. Weimann, Phys. Rev. B PRBMDO56, 9813 (1997).en_US
dc.identifier.citedreferenceL. P. Kouwenhoven, B. J. van Wees, C. J. P. M. Hartmans, J. G. Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon, and J. J. Harris, Phys. Rev. B PRBMDO39, 8040 (1989).en_US
dc.identifier.citedreferenceM. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. PRLTAO75, 3340 (1995).en_US
dc.identifier.citedreferenceK. K. Likharev, IBM J. Res. Dev. IBMJAE32, 144 (1988).en_US
dc.identifier.citedreferenceA. N. Korotkov, Phys. Rev. B PRBMDO49, 10381 (1994).en_US
dc.identifier.citedreferenceG. Zimmerli, T. M. Eiles, R. L. Kautz, and J. M. Martinis, Appl. Phys. Lett. APPLAB61, 237 (1992).en_US
dc.identifier.citedreferenceM. B. Das, IEEE Trans. Electron Devices IETDAI19, 338 (1972).en_US
dc.identifier.citedreferenceJ. H. Davies, I. A. Larkin, and E. V. Sukhorukov, J. Appl. Phys. JAPIAU77, 4504 (1995).en_US
dc.identifier.citedreferenceM. Heiblum, D. C. Thomas, C. M. Knoedler, and M. I. Nathan, Appl. Phys. Lett. APPLAB47, 1105 (1985).en_US
dc.identifier.citedreferenceA. Palevski, C. P. Umbach, and M. Heiblum, Appl. Phys. Lett. APPLAB55, 1421 (1989).en_US
dc.identifier.citedreferenceX. Ying, J. P. Lu, J. J. Heremans, M. B. Santos, M. Shayegan, S. A. Lyon, M. Littman, P. Gross, and H. Rabitz, Appl. Phys. Lett. APPLAB65, 1154 (1994).en_US
dc.identifier.citedreferenceR. E. Burgess, Br. J. Appl. Phys. BJAPAJ6, 185 (1955).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.