Show simple item record

Recombination characteristics of minority carriers near the AlxOy/GaAsAlxOy/GaAs interface using the light beam induced current technique

dc.contributor.authorGebretsadik, H.en_US
dc.contributor.authorZhang, K.en_US
dc.contributor.authorKamath, Kishore K.en_US
dc.contributor.authorZhang, X.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T21:07:36Z
dc.date.available2010-05-06T21:07:36Z
dc.date.issued1997-12-29en_US
dc.identifier.citationGebretsadik, H.; Zhang, K.; Kamath, K.; Zhang, X.; Bhattacharya, P. (1997). "Recombination characteristics of minority carriers near the AlxOy/GaAsAlxOy/GaAs interface using the light beam induced current technique." Applied Physics Letters 71(26): 3865-3867. <http://hdl.handle.net/2027.42/69772>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69772
dc.description.abstractThe light beam induced current (LBIC) technique was used to characterize the interface formed by the wet oxidation of AlAs and AlxGa1−xAsAlxGa1−xAs (x = 0.98(x=0.98 and 0.95). LBIC scans were used to calculate the diffusion lengths of minority carriers both in the bulk and near these interfaces; and the corresponding interface recombination velocities were estimated. The interface recombination velocity at the oxide/semiconductor interface is 3.13×105 cm/s3.13×105cm/s for AlAs, and 1.90×104 cm/s1.90×104cm/s for Al0.98Ga0.02As.Al0.98Ga0.02As. It is found that the addition of gallium in the AlAs can significantly improve this property. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent303060 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRecombination characteristics of minority carriers near the AlxOy/GaAsAlxOy/GaAs interface using the light beam induced current techniqueen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69772/2/APPLAB-71-26-3865-1.pdf
dc.identifier.doi10.1063/1.120545en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceJ. M. Dallesasse, N. Holonyak, Jr., A. R. Sugg, T. A. Richard, and N. El-Zein, Appl. Phys. Lett. APPLAB57, 2844 (1990).en_US
dc.identifier.citedreferenceG. M. Yang, M. H. MacDougal, and P. D. Dapkus, Electron. Lett. ELLEAK31, 886 (1995).en_US
dc.identifier.citedreferenceD. L. Huffaker, T.-H. Oh, and D. G. Deppe, IEEE Photonics Technol. Lett. IPTLEL9, 716 (1997).en_US
dc.identifier.citedreferenceE. I. Chen, N. Holonyak, Jr., A. R. Sugg, T. A. Richard, and N. El-Zein, Appl. Phys. Lett. APPLAB66, 286 (1995).en_US
dc.identifier.citedreferenceP. Parikh, P. Chavarkar, and U. Mishra, Proceedings of the DRC, 1996 (unpublished), p. 134.en_US
dc.identifier.citedreferenceK. D. Choquette, K. M. Geib, R. Hull, H. Q. Hou, K. L. Lear, H. C. Chui, B. E. Hammons, and J. A. Nevers, Proceedings of the IEEE 9th Annual Meeting of the Lasers Electro-Optics Society, 1996 (unpublished), Vol. 1, p. 390.en_US
dc.identifier.citedreferenceZ. Liliental-Weber, M. Li, G. S. Li, C. Chang-Hasnain, and E. R. Weber, IEEE Conference on Semiconducting and Insulating Materials, 1996 (unpublished), p. 159.en_US
dc.identifier.citedreferenceK. L. Ashley and J. R. Biard, IEEE Trans. Electron Devices IETDAIED-14, 429 (1967).en_US
dc.identifier.citedreferenceJ. D. Zook, Appl. Phys. Lett. APPLAB37, 223 (1980).en_US
dc.identifier.citedreferenceC. H. Seager, J. Appl. Phys. JAPIAU53, 5968 (1982).en_US
dc.identifier.citedreferenceM. Watanabe, G. Actor, and H. C. Gatos, IEEE Trans. Electron Devices IETDAIED-24, 1172 (1977).en_US
dc.identifier.citedreferenceC. Hu and C. Drowley, Solid-State Electron. SSELA521, 965 (1978).en_US
dc.identifier.citedreferenceJ. Mimilla-Arroyo and J. C. Bourgoin, J. Appl. Phys. JAPIAU55, 2836 (1984); D. Biswas, P. R. Berger, and P. Bhattacharya, 65, 2571 (1989).en_US
dc.identifier.citedreferenceD. Biswas, P. R. Berger, U. Das J. E. Oh, and P. Bhattacharya, J. Electron. Mater. JECMA518, 137 (1989).en_US
dc.identifier.citedreferenceM. Ochiai, G. E. Guidice, and H. Temkin, Appl. Phys. Lett. APPLAB68, 1898 (1996).en_US
dc.identifier.citedreferenceK. D. Choquette, K. L. Lear, R. P. Schneider, Jr., and H. C. Chui, Proceedings of the IEEE 8th Annual Meeting of the Lasers Electro-Optics Society, 1996 (unpublished), Vol. 2, p. 412.en_US
dc.identifier.citedreferenceH. Nickel, J. Appl. Phys. JAPIAU78, 5201 (1995).en_US
dc.identifier.citedreferenceS. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisher, and N. A. Bojarczuk, Appl. Phys. Lett. APPLAB68, 906 (1996).en_US
dc.identifier.citedreferenceJ. A. Kash, B. Pezeshki, F. Agahi, and N. A. Bojarczuk, in Ref. 16, Vol. 1, p. 83.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.