Show simple item record

The collapse of a cavitation bubble in shear flows—A numerical study

dc.contributor.authorYu, Po‐wenen_US
dc.contributor.authorCeccio, Steven L.en_US
dc.contributor.authorTryggvason, Grétaren_US
dc.date.accessioned2010-05-06T21:09:12Z
dc.date.available2010-05-06T21:09:12Z
dc.date.issued1995-11en_US
dc.identifier.citationYu, Po‐Wen; Ceccio, Steven L.; Tryggvason, Grétar (1995). "The collapse of a cavitation bubble in shear flows—A numerical study." Physics of Fluids 7(11): 2608-2616. <http://hdl.handle.net/2027.42/69789>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69789
dc.description.abstractThe collapse of a cavitation bubble is examined by direct numerical simulations of the Navier–Stokes equations, using a finite difference/front tracking technique. Bubbles in both a quiescent fluid as well as shear flows are examined. For quiescent fluid, the results are compared with theoretical and previous computational results. For bubbles in a shear flow it is shown that large shear can increase the rate of collapse, and for bubbles near boundaries shear can eliminate the re‐entrant jet seen for bubbles in a quiescent flow. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1082973 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe collapse of a cavitation bubble in shear flows—A numerical studyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, Michigan 48109‐2121en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69789/2/PHFLE6-7-11-2608-1.pdf
dc.identifier.doi10.1063/1.868709en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. F. Naude and A. T. Ellis. “On the mechanism of cavitation damage by non-hemispherical cavities in contact with a solid boundary,” Trans. ASME J. Basic Eng. 83, 648 (1961).en_US
dc.identifier.citedreferenceJ. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free surface,” J. Fluid Mech. 111, 123 (1981).en_US
dc.identifier.citedreferenceJ. R. Blake, B. B. Taib, and G. Doherty, “Transient cavities near boundaries. Part I. Rigid boundary,” J. Fluid Mech. 170, 479 (1986).en_US
dc.identifier.citedreferenceA. Shima and K. Nakajima, “The collapse of a non-hemispherical bubble attached to solid wall,” J. Fluid Mech. 80, 369 (1977).en_US
dc.identifier.citedreferenceW. Lauterborn and H. Bolle, “Experimental investigations of cavitation bubble collapse in the neighborhood of a solid boundary,” J. Fluid Mech. 72, 391 (1975).en_US
dc.identifier.citedreferenceN. D. Shutler and R. B. Mesler, “A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries,” Trans. ASME J. Basic Eng. 87, 511 (1965).en_US
dc.identifier.citedreferenceJ. H. J. van der Meulen, “A study of the collapse of laser-induced bubbles in a flow near a boundary,” in ASME Cavitation and Multiphase Flow (American Society of Mechanical Engineers, New York, 1987), pp. 21–25.en_US
dc.identifier.citedreferenceM. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary,” J. Fluid Mech. 47, 238 (1971).en_US
dc.identifier.citedreferenceT. M. Mitchell and F. H. Hammitt, “Asymmetric cavitation bubble collapse,” Trans. ASME J. Fluid Eng. 95, 29 (1973).en_US
dc.identifier.citedreferenceR. B. Chapman and M. S. Plesset, “Nonlinear effects in the collapse of a nearly spherical cavity in a liquid,” Trans. ASME, J. Basic Eng. 94, 142 (1972).en_US
dc.identifier.citedreferenceF. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids. 8, 2182 (1965).en_US
dc.identifier.citedreferenceJ. R. Blake, B. B. Taib, and G. Doherty, “Transient cavities near boundaries. Part II. Free Surface,” J. Fluid Mech. 170, 479 (1986).en_US
dc.identifier.citedreferenceG. L. Chahine, “Numerical modeling of the dynamic behavior of bubbles in nonuniform flow,” Num. Methods Multiphase Flows 91, 57 (1990).en_US
dc.identifier.citedreferenceG. L. Chahine and R. Duraiswami, “Dynamical interactions in a multi-bubble cloud,” Trans. ASME J. Fluid Eng. 114, 680 (1992).en_US
dc.identifier.citedreferenceG. L. Chahine, “Strong bubble∕bubble and bubble∕flow interactions,” Bubble Dynamics and Interface Phenomena (Kluwer Academic, Dordrecht, 1994), pp. 181–195.en_US
dc.identifier.citedreferenceS. Green, “Fluid vortices,” Bubble Interactions with Vortices, edited by G. L. Chahine (Kluwer, New York, 1995), Chap. XVIII, pp. 783–825.en_US
dc.identifier.citedreferenceS. L. Ceccio and C. E. Brennen, “Observation of the dynamics and acoustics of travelling bubble cavitation,” J. Fluid Mech. 233, 663 (1991).en_US
dc.identifier.citedreferenceG. L. Chahine, “Bubble dynamics and cavitation inception in non-uniform flow fields,” in Proceedings of The 20th Symposium on Naval Hydrodynamics (National Academy Press, Washington, DC, 1994), pp. 42–61.en_US
dc.identifier.citedreferenceH. Poritsky, “The collapse or growth of a spherical bubble or cavity in a viscous fluid,” in Proceedings of the 1st National Congress on Applied Mechanics (ASME, New York, 1952), pp. 823–825.en_US
dc.identifier.citedreferenceA. Shima and T. Tsujino, “The behavior of bubbles in non-Newtonian lubricants,” Trans. ASME J. Lub. Technol. 99, 455 (1977).en_US
dc.identifier.citedreferenceM. Maeda, H. Yamagucbi, and H. Kato, “Laser holography measurement of bubble population in cavitation cloud on a foil section,” in ASME Cavitation and Multiphase Flow Forum (American Society of Mechanical Engineers, New York, 1991), pp. 67–75.en_US
dc.identifier.citedreferenceH. Yamaguchi, H. Kato, A. Kamijo, and M. Maeda, “Development of a laser holography system for the measurement of cavitation bubble clusters,” in ASME Cavitation and Multiphase Flow Forum (American Society of Mechanical Engineers, New York, 1990), p. 115.en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “Computations of multi-fluid flows,” Physica D 60, 70 (1992).en_US
dc.identifier.citedreferenceM. R. Nobari, Y.-J. Jan, and G. Tryggvason, “Head-on collisions of drops— a numerical investigation,” submitted to Phys. Fluids.en_US
dc.identifier.citedreferenceM. R. Nobari and G Tryggvason, “Numerical simulations of drop collisions,” in Proceedings of the AIAA Meeting and Exhibit (AIAA, Washington, DC, 1993).en_US
dc.identifier.citedreferenceY.-J. Jan and G. Tryggvason, “A computational study of contaminated bubbles at finite Reynolds number,” submitted to Phys. Fluids.en_US
dc.identifier.citedreferenceM. R. Nobari and G Tryggvason, “Numerical simulation of three dimensional drop collisions,” submitted to J. Fluid Mech.en_US
dc.identifier.citedreferenceE. Ervin, “Computations of bubbles and drops in a shear flow,” Ph.D. thesis, University of Michigan, 1993.en_US
dc.identifier.citedreferenceM. S. Plesset, “The dynamics of cavitation bubbles,” Trans. ASME. J. Appl. Mech. 71, 277 (1949).en_US
dc.identifier.citedreferenceC. L. Kling and F. G. Hammitt, “A photographic study of spark-induced cavitation bubble,” Trans. ASME J. Basic Eng. 94, 825 (1972).en_US
dc.identifier.citedreferenceJ.-P. Le Goff, “Nuclei and cavitation,” 14th Symposium on Naval Hydrodynamics (National Academy Press, Washington, DC, 1983), pp. 215–242; p. 232, photo 1.en_US
dc.identifier.citedreferenceR. D. Ivany, “Collapse of a cavitation bubble in viscous compressible liquid—Numerical and experimental analysis, Ph.D. thesis, University of Michigan, Ann Arbor, 1965.en_US
dc.identifier.citedreferenceP.-W. Yu, “Experimental and numerical examination of cavitating flows,” Ph.D. thesis, University of Michigan, Ann Arbor, 1995.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.