Show simple item record

High-resolution scanning thermal probe with servocontrolled interface circuit for microcalorimetry and other applications

dc.contributor.authorLee, J. -H.en_US
dc.contributor.authorGianchandani, Yogesh B.en_US
dc.date.accessioned2010-05-06T21:11:30Z
dc.date.available2010-05-06T21:11:30Z
dc.date.issued2004-05en_US
dc.identifier.citationLee, J.-H.; Gianchandani, Y. B. (2004). "High-resolution scanning thermal probe with servocontrolled interface circuit for microcalorimetry and other applications." Review of Scientific Instruments 75(5): 1222-1227. <http://hdl.handle.net/2027.42/69814>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69814
dc.description.abstractThis article presents a scanning thermal microscopy sensing system equipped with a customized micromachined thermal imaging probe and closed loop interface circuit. The micromachined thermal probe has a thin film metal bolometer sandwiched between two layers of polyimide for high thermal isolation and mechanical flexibility, and a tip with a diameter of approximately 50 nm which provides fine spatial resolution. The circuit includes a proportional-integral (PI) controller which couples to a Wheatstone bridge circuit in which the bolometer forms one leg. The PI controller adjusts power supplied to thermal probe, compensating change in heat loss from probe tip to sample and keeping the resistance bridge balanced. It permits precise control of probe temperature to within 2.3 mK, and widens its applications to microcalorimetry. The probe is used in thermal mapping and microcalorimetry applications. A calibration method based on microcalorimetric measurements of melting temperature is presented for the probe. Scanning thermal images show a high signal-to-noise ratio of 15.7 for 300 nm thick photoresist in which the minimum detectable thermal conductance change is <23 pW/K<23pW/K (which corresponds to a topographic change of 7.2 nm). Subsurface scans show a signal-to-noise ratio of 15.5 for variation of 1.0% in thermal resistance for a topographically smooth surface.© 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent857304 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHigh-resolution scanning thermal probe with servocontrolled interface circuit for microcalorimetry and other applicationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEECS Department, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherECE Department, University of Wisconsin, Madison, Wisconsin 53706en_US
dc.contributor.affiliationotherECE Department, University of Wisconsin, Madison, Wisconsin 53706en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69814/2/RSINAK-75-5-1222-1.pdf
dc.identifier.doi10.1063/1.1711153en_US
dc.identifier.sourceReview of Scientific Instrumentsen_US
dc.identifier.citedreferenceM.-H. Li and Y. B. Gianchandani, Sens. Actuators, A SAAPEB104, 236 (2003).en_US
dc.identifier.citedreferenceL. E. Ocola, D. Fryer, P. Nealey, J. dePablo, F. Cerrina, and S. Kämmer, J. Vac. Sci. Technol. B JVTBD914, 3974 (1996).en_US
dc.identifier.citedreferenceH. K. Wickramasinghe, Sci. Am. SCAMACOct., 98 (1989).en_US
dc.identifier.citedreferenceP. Vettiger, M. Despont, U. Drechsler, U. Dörig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, IBM J. Res. Dev. IBMJAE44, 323 (2000).en_US
dc.identifier.citedreferenceA. Majumdar, Annu. Rev. Mater. Sci. ARMSCX29, 505 (1999).en_US
dc.identifier.citedreferenceA. Hammiche, D. J. Hourston, H. M. Pollock, M. Reading, and M. Song, J. Vac. Sci. Technol. B JVTBD914, 1486 (1996).en_US
dc.identifier.citedreferenceA. Majumdar, J. Lai, M. Chandrachood, O. Nakabeppu, Y. Wu, and Z. Shi, Rev. Sci. Instrum. RSINAK66, 3584 (1995).en_US
dc.identifier.citedreferenceY. Suzuki, Jpn. J. Appl. Phys., Part 2 JAPLD835, L352 (1996).en_US
dc.identifier.citedreferenceY. B. Gianchandani and K. Najafi, IEEE Trans. Electron Devices IETDAI44, 1857 (1997).en_US
dc.identifier.citedreferenceG. Mills, H. Zhou, A. Midha, L. Donaldson, and J. M. R. Weaver, Appl. Phys. Lett. APPLAB72, 2900 (1998).en_US
dc.identifier.citedreferenceH. Zhou, A. Midha, G. Mills, S. Thoms, S. K. Murad, and J. M. R. Weaver, J. Vac. Sci. Technol. B JVTBD916, 54 (1998).en_US
dc.identifier.citedreferenceR. B. Dinwiddie, R. J. Pylkki, and P. E. West, Therm. Conduct. THCOD922, 668 (1994).en_US
dc.identifier.citedreferenceA. Hammiche, H. M. Pollock, M. Song, and D. J. Hourston, Meas. Sci. Technol. MSTCEP7, 142 (1996).en_US
dc.identifier.citedreferenceR. C. Davis, C. C. Williams, and P. Neuzil, Appl. Phys. Lett. APPLAB66, 2309 (1995).en_US
dc.identifier.citedreferenceT. Leinhos, M. Stopka, and E. Oesterschulze, Appl. Phys. A: Mater. Sci. Process. APAMFC66, S65-9 (1998).en_US
dc.identifier.citedreferenceJ. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gmzewski, and Ch. Gerber, Rev. Sci. Instrum. RSINAK65, 3793 (1994).en_US
dc.identifier.citedreferenceO. Nakabeppu, M. Chandrachood, Y. Wu, J. Lai, and A. Majumdar, Appl. Phys. Lett. APPLAB66, 694 (1995).en_US
dc.identifier.citedreferenceVeeco, www.veeco.comen_US
dc.identifier.citedreferenceG. B. M. Fiege, A. Altes, R. Heiderhoff, and L. J. Balk, J. Phys. D JPAPBE32, L13 (1999).en_US
dc.identifier.citedreferenceD. Fryer, P. Nealey, and J. de Pablo, Macromolecules MAMOBX33, 6439 (2000).en_US
dc.identifier.citedreferenceD. Fryer, P. Nealey, and J. de Pablo, J. Vac. Sci. Technol. B JVTBD918, 3376 (2000).en_US
dc.identifier.citedreferenceM.-H. Li and Y. B. Gianchandani, J. Vac. Sci. Technol. B JVTBD918, 3600 (2000).en_US
dc.identifier.citedreferenceD. J. Yonce, P. P. Bey, Jr., and T. L. J. Fare, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. ITCAEX47, 273 (2000).en_US
dc.identifier.citedreferenceK. Mochizuki and K. Watanabe, Proceedings on Instrumentation and Measurement Technology Conference (IMTC, Waltham, MA, 1995), p. 339.en_US
dc.identifier.citedreferenceJ. H. Huijsing, G. A. Van Rossum, and M. van der Lee, IEEE J. Solid-State Circuits IJSCBCSC-22, 343 (1987).en_US
dc.identifier.citedreferenceB. Gilbert, IEEE J. Solid-State Circuits IJSCBCSC-11, 852 (1976).en_US
dc.identifier.citedreferenceA. Cichocki and R. Unbehauen, Sens. Actuators, A SAAPEB24, 129 (1990).en_US
dc.identifier.citedreferenceF. M. L. van der Goes, P. C. De Jong, G. C. M. Meijer, Proceedings IEEE International Conference on Solid-State Sensors and Actuators (Transducers, Yokohama, Japan, 1993), p. 331.en_US
dc.identifier.citedreferenceV. Ferrari, C. Ghidini, D. Marioli, and A. Taroni, Meas. Sci. Technol. MSTCEP8, 827 (1997).en_US
dc.identifier.citedreferenceJ.-H. Lee, M.-H. Li, and Y. B. Gianchandani, Proceedings International Workshop on Thermal Investigations of ICs and Systems (THERMINIC, Madrid, Spain, 2002), p. 111.en_US
dc.identifier.citedreferenceJ.-H. Lee, Ph.D. Dissertation, University of Wisconsin, Madison, 2003.en_US
dc.identifier.citedreferenceM.-H. Li, J. J. Wu, and Y. B. Gianchandani, J. Microelectromech. Syst. JMIYET10, 3 (2001).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.