Show simple item record

Fractal chemical kinetics: Simulations and experiments

dc.contributor.authorAnacker, Lola W.en_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-05-06T21:12:42Z
dc.date.available2010-05-06T21:12:42Z
dc.date.issued1984-12-20en_US
dc.identifier.citationAnacker, L. W.; Kopelman, R. (1984). "Fractal chemical kinetics: Simulations and experiments." The Journal of Chemical Physics 81(12): 6402-6403. <http://hdl.handle.net/2027.42/69827>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69827
dc.description.abstractWe relate the effective order X of the elementary binary reaction, A+A→ products, on a fractal, to the spectral dimension. For ds<2: X=1+2/ds. We regain the calsssical value (X=2) for the cubic lattice but get X=3 for the linear lattice. Supercomputer simulations (transient and steady state) and exciton fusion experiments are in quantitative agreement with the above. For percolating clusters X=2.5 and for the Sierpinski gasket X=2.45. Relevance to heterogeneous kinetics is discussed.en_US
dc.format.extent3102 bytes
dc.format.extent171413 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleFractal chemical kinetics: Simulations and experimentsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69827/2/JCPSA6-81-12-6402-1.pdf
dc.identifier.doi10.1063/1.447553en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceU. Even, K. Rademann, J. Jortner, N. Manor, and R. Reisfeld, Phys. Rev. Lett. 42, 2164 (1984).en_US
dc.identifier.citedreferenceT. A. Witten and L. M. Sander, Phys. Rev. Lett. 46, 1400 (1981).en_US
dc.identifier.citedreferenceR. Kopelman, in Radiationless Processes in Molecules and Condensed Phases, edited by F. K. Fong (Springer, Berlin, 1976), Vol. 15, p. 297.en_US
dc.identifier.citedreferenceP. G. de Gennes, Recherche 7, 919 (1976).en_US
dc.identifier.citedreferenceP. Argyrakis and R. Kopelman, Phys. Rev. B 22, 1830 (1980).en_US
dc.identifier.citedreferenceS. Alexander and R. Orbach, J. Phys. Lett. Paris 43, L625 (1982).en_US
dc.identifier.citedreferenceY. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).en_US
dc.identifier.citedreferenceA. Aharony and D. Stauffer, Phys. Rev. Lett. 52, 2368 (1984).en_US
dc.identifier.citedreferenceP. Argyrakis and R. Kopelman, J. Chem. Phys. 81, 1015 (1984).en_US
dc.identifier.citedreferenceR. Kopelman and P. Argyrakis, J. Chem. Phys. 72, 3053 (1980).en_US
dc.identifier.citedreferenceP. G. de Gennes, J. Chem. Phys. 76, 3316 (1982).en_US
dc.identifier.citedreferenceP. W. Klymko and R. Kopelman, J. Lumin. 24∕25, 457 (1981).en_US
dc.identifier.citedreferenceP. W. Klymko and R. Kopelman, J. Phys. Chem. 86, 3686 (1982).en_US
dc.identifier.citedreferenceP. W. Klymko and R. Kopelman, J. Phys. Chem. 87, 4565 (1983).en_US
dc.identifier.citedreferenceR. Kopelman, J. Hoshen, J. S. Newhouse, and P. Argyrakis, J. Stat. Phys. 30, 335 (1983).en_US
dc.identifier.citedreferenceA. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B 27, 3429 (1983).en_US
dc.identifier.citedreferenceP. G. de Gennes, Chem. R. Acad. Sci. Paris 296, 881 (1983).en_US
dc.identifier.citedreferenceP. Evesque, J. Phys. 44, 1217 (1983).en_US
dc.identifier.citedreferenceP. Evesque and J. Duran, J. Chem. Phys. 80, 3016 (1984).en_US
dc.identifier.citedreferenceK. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).en_US
dc.identifier.citedreferenceR. Kopelman, P. W. Klymko, J. S. Newhouse, and L. W. Anacker, Phys. Rev. B 29, 3747 (1984).en_US
dc.identifier.citedreferenceP. Meakin and H. E. Stanley, J. Phys. A 17, L173 (1984).en_US
dc.identifier.citedreferenceP. Argyrakis and R. Kopelman, Phys. Rev. B 29, 511 (1984).en_US
dc.identifier.citedreferenceR. Rammal and G. Toulouse, J. Phys. Lett. Paris 44, L13 (1983).en_US
dc.identifier.citedreferenceL. W. Anacker, R. Kopelman, and J. S. Newhouse, J. Stat. Phys. 36, 591 (1984).en_US
dc.identifier.citedreferenceJ. S. Newhouse, P. Argyrakis, and R. Kopelman, Chem. Phys. Lett. 107, 48 (1984).en_US
dc.identifier.citedreferenceP. Argyrakis, L. W. Anacker, and R. Kopelman, J. Stat. Phys. 36, 579 (1984).en_US
dc.identifier.citedreferenceL. W. Anacker, P. W. Klymko, and R. Kopelman, J. Lumin. (in press).en_US
dc.identifier.citedreferencePreliminary steady‐state simulation results on percolating clusters give X  =  2.51,X=2.51, J. S. Newhouse and R. Kopelman (unpublished).en_US
dc.identifier.citedreferenceR. M. Noyes, Prog. React. Kinet. 1, 128 (1961).en_US
dc.identifier.citedreferenceD. C. Torney and H. M. McConnel, J. Phys. Chem. 87, 1441 (1983).en_US
dc.identifier.citedreferenceD. C. Torney, J. Chem. Phys. 79, 3606 (1983).en_US
dc.identifier.citedreferenceD. F. Calef and J. M. Deutsch, Annu. Rev. Phys. Chem. 34, 493 (1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.