Show simple item record

Epitaxial strain, metastable structure, and magnetic anisotropy in Co‐based superlattices (invited)

dc.contributor.authorClarke, Royen_US
dc.contributor.authorElagoz, S.en_US
dc.contributor.authorVavra, W.en_US
dc.contributor.authorSchuler, E.en_US
dc.contributor.authorUher, Ctiraden_US
dc.date.accessioned2010-05-06T21:12:49Z
dc.date.available2010-05-06T21:12:49Z
dc.date.issued1991-11-15en_US
dc.identifier.citationClarke, Roy; Elagoz, S.; Vavra, W.; Schuler, E.; Uher, C. (1991). "Epitaxial strain, metastable structure, and magnetic anisotropy in Co‐based superlattices (invited)." Journal of Applied Physics 70(10): 5775-5779. <http://hdl.handle.net/2027.42/69828>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69828
dc.description.abstractWe explore the relationship between interface structure and magnetic anisotropy in three types of Co‐based superlattices: Cohcp‐Au; Cofcc‐Cu; and Cohcp‐Cr, grown epitaxially on GaAs(110). For very thin layers of Co, Co‐Au, and Co‐Cu superlattices exhibit a perpendicular easy axis due to magnetoelastic contributions to the anisotropy energy. The magnetic anisotropy in Co‐Cr is found to be strongly dependent on growth conditions. At slow deposition rates of Co the interface between Co and Cr becomes diffuse as is evidenced by a low saturation moment and a shift toward perpendicular anisotropy whereas samples with abrupt interfaces show predominantly parallel anisotropy. The Cr layers grow in a metastable hcp phase which appears to be paramagnetic. The results illustrate the influence of the heterointerface on magnetic properties.en_US
dc.format.extent3102 bytes
dc.format.extent661357 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEpitaxial strain, metastable structure, and magnetic anisotropy in Co‐based superlattices (invited)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, The University of Michigan, Ann Arbor, Michigan 48109‐1120en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69828/2/JAPIAU-70-10-5775-1.pdf
dc.identifier.doi10.1063/1.350157en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceSee, for example, Thin Film Growth Techniques for Low-dimensional Structures, edited by R. F. C. Farrow, S. S. P. Parkin, P. J. Dobson, J. H. Neave, and A. S. Arrott (Plenum, New York, 1987).en_US
dc.identifier.citedreferenceGrowth, Characterization and Properties of Ultrathin Magnetic Films and Multilayers, edited by B. T. Jonker, J. P. Heremans, and E. E. Marinero, Materials Research Society Proceedings 151 (MRS, Pittsburgh, 1989).en_US
dc.identifier.citedreferenceFor a review see: L. M. Falicov et al., J. Mater. Res. 5, 1299 (1990).en_US
dc.identifier.citedreferenceW. A. Jesser and J. W. Matthews, Philos. Mag. 17, 461 (1968); O. Haase, Z. Naturforsch. Teil A 14, 920 (1959); B. Heinrich, K. B. Urquhart, J. R. Dutcher, S. T. Purcell, J. F. Cochran, and A. S. Arrott, J. Appl. Phys. 63, 3863 (1988).en_US
dc.identifier.citedreferenceG. A. Prinz, Phys. Rev. Lett. 54, 1051 (1985).en_US
dc.identifier.citedreferenceC. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).en_US
dc.identifier.citedreferenceU. Gradmann, J. Magn. Magn. Mater. 54–57, 733 (1986).en_US
dc.identifier.citedreferenceP. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).en_US
dc.identifier.citedreferenceF. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988).en_US
dc.identifier.citedreferenceC. H. Lee, H. He, F. J. Lamelas, W. Vavra, C. Uher, and R. Clarke, Phys. Rev. B 42, 1066 (1990).en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 1.18 (1974).en_US
dc.identifier.citedreferenceB. I. Min, T. Oguchi, and A. J. Freeman, Phys. Rev. B 33, 7852 (1986); P. M. Marcus and V. L. Moruzzi, Solid State Commun. 55, 971 (1985).en_US
dc.identifier.citedreferenceK. LeDang, P. Veillet, H. Hui, F. J. Lamelas, C. H. Lee, and R. Clarke, Phys. Rev. B 41, 12, 902 (1990).en_US
dc.identifier.citedreferenceR. Walmsley, J. Thomson, D. Friedman, R. M. White, and T. H. Geballe, IEEE Trans. Magn. MAG-19, 1992 (1983).en_US
dc.identifier.citedreferenceF. J. Lamelas, C. H. Lee, H. Hui, W. Vavra, and R. Clarke, Phys. Rev. B 40, 5837 (1989).en_US
dc.identifier.citedreferenceC. H. Lee, H. Hui, F. Lamelas, W. Vavra, C. Uher, and R. Clarke, Phys. Rev. Lett. 62, 653 (1989); H. Hui, Ph.D. thesis, The University of Michigan, 1990 (University Microfilms, Inc., Ann Arbor).en_US
dc.identifier.citedreferenceF. J. Lamelas, H. D. He, and R. Clarke, Phys. Rev. B 43, 12296 (1991).en_US
dc.identifier.citedreferenceH. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder, J. Magn. Magn. Mater. 66, 351 (1987).en_US
dc.identifier.citedreferenceW. Sucksmith and J. E. Thompson, Proc. R. Soc. London Scr. A 225, 362 (1954).en_US
dc.identifier.citedreferenceD. Pescia, D. Kerkmann, F. Schumann, and W. Gudat, Z. Phys. B 78, 475 (1990).en_US
dc.identifier.citedreferenceA. Cebollada, J. L. Martinez, J. M. Gallego, J. J. de Miguel, R. Miranda, S. Ferrer, F. Batallan, G. Fillion, and J. P. Rebouillat, Phys. Rev. B 39, 9726 (1989); P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).en_US
dc.identifier.citedreferenceS. M. Durbin, L. E. Berman, B. W. Batterman, M. B. Brodsky, and H. C. Hamaker, Phys. Rev. B 37, 6672 (1988).en_US
dc.identifier.citedreferenceW. Vavra, S. Elagoz, R. Clarke, and C. Uher (to be published).en_US
dc.identifier.citedreferenceS. Iwasaki and R. Ouchi, IEEE Trans. Magn. MAG-14, 849 (1978).en_US
dc.identifier.citedreferenceHere we note that bcc Cr has a 2% larger lattice constant than bcc Co and we assume that this scaling can be applied to hep Cr and Co.en_US
dc.identifier.citedreferenceD. A. Papaconstantopoulos, J. L. Fry, and N. E. Brener, Phys. Rev. B 39, 2526 (1989).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.