A novel phase focusing mechanism in multipactor discharge

Show simple item record

dc.contributor.author Kishek, R. A. en_US
dc.contributor.author Lau, Y. Y. en_US
dc.date.accessioned 2010-05-06T21:15:11Z
dc.date.available 2010-05-06T21:15:11Z
dc.date.issued 1996-05 en_US
dc.identifier.citation Kishek, R. A.; Lau, Y. Y. (1996). "A novel phase focusing mechanism in multipactor discharge." Physics of Plasmas 3(5): 1481-1483. <http://hdl.handle.net/2027.42/69854> en_US
dc.identifier.uri http://hdl.handle.net/2027.42/69854
dc.description.abstract In spite of the mutual repulsion among the space charges, a new phase‐focusing mechanism is discovered whereby the leading edge of the multipactor discharge in an rf circuit grows at the expense of the trailing edge. This effect arises from the different impact energies, and hence different secondary electron yields, experienced by different portions of the discharge. This phase focusing mechanism may shape the steady‐state multipactor discharge in the form of a very tight bunch of electrons. © 1996 American Institute of Physics. en_US
dc.format.extent 3102 bytes
dc.format.extent 77474 bytes
dc.format.mimetype text/plain
dc.format.mimetype application/pdf
dc.publisher The American Institute of Physics en_US
dc.rights © The American Institute of Physics en_US
dc.title A novel phase focusing mechanism in multipactor discharge en_US
dc.subject.hlbsecondlevel Physics en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109‐2104 en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/69854/2/PHPAEN-3-5-1481-1.pdf
dc.identifier.doi 10.1063/1.872027 en_US
dc.identifier.source Physics of Plasmas en_US
dc.identifier.citedreference J. R. M. Vaughan, IEEE Trans. Electron Devices ED-35, 1172 (1988). en_US
dc.identifier.citedreference S. Riyopoulos, D. Chernin, and D. Dialetis, Phys. Plasmas 2, 3194 (1995). en_US
dc.identifier.citedreference R. Kishek and Y. Y. Lau, Phys. Rev. Lett. 75, 1218 (1995). en_US
dc.identifier.citedreference A. S. Gilmore, Microwave Tubes (Artech, Norwood, MA, 1986), p. 474. en_US
dc.identifier.citedreference K. J. Kleman, Proceedings of the Particle Accelerator Conference, Washington, DC, 1993 (Institute of Electronics and Electrical Engineers, New York, 1993), p. 924 (IEEE Catalog No. 93CH32797). en_US
dc.identifier.citedreference A. D. Woode and J. Petit, Microwave J. January, 142 (1992). en_US
dc.identifier.citedreference A nonzero initial velocity contributes to a phase perturbation in each cycle, and its inclusion does not lead to a qualitative change of the fixed phase solutions, as was shown in Ref. 2. However, a spread in the emission velocities of the secondary electrons, and the time delays in secondary emission, may weaken (or even destroy in extreme cases) the phasefocusing mechanism. en_US
dc.identifier.citedreference J. R. M. Vaughan, IEEE Trans. Electron Devices ED-36, 1963 (1989); A. Shih and C. Hor, IEEE Trans. Electron Devices ED-40, 824 (1993). en_US
dc.identifier.citedreference The analysis in Ref. 3 shows that only the first-crossover point E1E1 of Fig. 2 corresponds to the stable steady-state solution. Hence, we investigate only cases in the vicinity of E1.E1. en_US
dc.owningcollname Physics, Department of
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Coming Soon

MLibrary logo