Show simple item record

Vibrationally excited populations from IR‐multiphoton absorption. I. Absorbed energy and reaction yield measurements

dc.contributor.authorZellweger, Jean‐michelen_US
dc.contributor.authorBrown, Trevor C.en_US
dc.contributor.authorBarker, John R.en_US
dc.date.accessioned2010-05-06T21:15:39Z
dc.date.available2010-05-06T21:15:39Z
dc.date.issued1985-12-15en_US
dc.identifier.citationZellweger, Jean‐Michel; Brown, Trevor C.; Barker, John R. (1985). "Vibrationally excited populations from IR‐multiphoton absorption. I. Absorbed energy and reaction yield measurements." The Journal of Chemical Physics 83(12): 6251-6260. <http://hdl.handle.net/2027.42/69859>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69859
dc.description.abstractThe molecule 1,1,2‐trifluroethane (TFE) was used in experiments to determine the population distribution of excited molecules produced by infrared multiphoton absorption induced by high power TEA CO2 lasers operating at 1079.85 cm−1 [9.6 μm R(22) line]. Optoacoustic measurements of absorbed laser power provided a measure of the mean energy of the population distribution, while very low pressure photolysis measurements of the collision‐free decomposition yield gave information about the high‐energy tail of the distribution. The experimental results were accurately simulated using a Master Equation model that incorporated Quack’s statistical–dynamical theory of infrared multiphoton absorption (cases B and C), RRKM unimolecular reactions (three channels), and collisional energy transfer. The computer simulations included known TFE molecular properties and only four adjustable parameters, which were very highly constrained in order to fit the experimental data. From the simulations, we conclude that the optical coupling matrix elements are dramatically reduced in magnitude for energies above the reaction thresholds. This effect is symptomatic of the vibrational anharmonicity due to the presence of the reaction channels, even in molecules that have not yet reacted, resulting in vibrational frequency shifts of the absorption lines out of resonance with the laser line. This effect is expected to be present and observable in other highly vibrationally excited molecules.en_US
dc.format.extent3102 bytes
dc.format.extent997172 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleVibrationally excited populations from IR‐multiphoton absorption. I. Absorbed energy and reaction yield measurementsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric and Oceanic Science, Space Physics Laboratory, University of Michigan, Ann Arbor, Michigan 48109‐2143en_US
dc.contributor.affiliationotherDepartment of Chemical Kinetics, Chemical Physics Laboratory, SRI International, Menlo Park, California 94025en_US
dc.contributor.affiliationotherDepartment of Chemical Engineering, University of Adelaide, Box 498, G.P.O., Adelaide, South Australia 5001en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69859/2/JCPSA6-83-12-6251-1.pdf
dc.identifier.doi10.1063/1.449574en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceFor recent reviews, see (a) N. Bloembergen and E. Yablonovitch, Phys. Today 31, 32 (1978); (b) P. A. Schultz, Aa. S. Sudbo, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Annu. Rev. Phys. Chem. 30, 379 (1979); (c) M. F. Goodman, J. Stone, and E. Thiele, in Multiple‐Photon Excitation and Dissociation of Polyatomic Molecules, edited by C. D. Cantrell (Springer, Berlin, 1980); (d) J. L. Lyman, G. P. Quigley, and O. P. Judd ibid.; (e) D. S. King, Dynamics of the Excited State, edited by K. P. Lawley (Wiley, New York, 1982), p. 105.en_US
dc.identifier.citedreferenceS. Ruhman, O. Anner, and Y. Haas, J. Phys. Chem. 88, 6397 (1984).en_US
dc.identifier.citedreferenceFor example, see J. W. Hudgens and J. D. McDonald, J. Chem. Phys. 76, 173 (1982).en_US
dc.identifier.citedreference(a) D. M. Golden, M. J. Rossi, A. C. Baldwin, and J. R. Barker, Acc. Chem. Res. 14, 56 (1981); (b) M. J. Rossi, J. R. Barker, and D. M. Golden, J. Chem. Phys. 76, 406 (1982).en_US
dc.identifier.citedreference(a) R. D. Bates, Jr., G. W. Flynn, and J. K. Knudtson, J. Chem. Phys. 53, 3621 (1970); (b) Opto‐Acoustic Spectroscopy and Detection, edited by Y. H. Pao (Academic, New York, 1977); (c) N. Presser, J. R. Barker, and R. J. Gordon, J. Chem. Phys. 78, 2163 (1983); (d) J. R. Barker, L. Brouwer, R. Patrick, M. Rossi, P. L. Trevor, and D. M. Golden, Int. J. Chem. Kinet. (in press).en_US
dc.identifier.citedreference(a) J. R. Barker, Chem. Phys. 77, 301 (1983); (b) J. R. Barker and R. E. Golden, J. Phys. Chem. 88, 1012 (1984).en_US
dc.identifier.citedreferenceJ.‐M. Zellweger, T. C. Brown, and J. R. Barker, J. Chem. Phys. 83, 6261 (1985).en_US
dc.identifier.citedreferenceV. F. Kalasinsky, H. Anjaria, and T. S. Little, J. Phys. Chem. 86, 1351 (1982).en_US
dc.identifier.citedreferenceB. E. Holmes, D. W. Setser, and G. O. Pritchard, Int. J. Chem. Kinet. 8, 215 (1976), and references therein.en_US
dc.identifier.citedreferenceD. M. Golden, G. N. Spokes, and S. W. Benson, Angew. Chem., Int. Ed. Eng. 12, 534 (1973).en_US
dc.identifier.citedreferenceJ. S. Chang, J. R. Barker, J. E. Davenport, and D. M. Golden, Chem. Phys. Lett. 60, 385 (1979).en_US
dc.identifier.citedreferenceFor a discussion of intensity profiles and deconvolution considerations, see A. C. Baldwin and J. R. Barker, J. Chem. Phys. 74, 3823 (1981).en_US
dc.identifier.citedreference(a) T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Natl. Stand. Ref. Data Serv. Natl. Bur. Stand. 39 (U.S. GPO, Washington, D.C., 1972), Vol. 1; 39, (1972); (b) T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 993 (1977).en_US
dc.identifier.citedreferenceA. C. Baldwin and J. R. Barker, J. Chem. Phys. 74, 3813 (1981).en_US
dc.identifier.citedreferenceD. T. Gillespie, J. Comput. Phys. 22, 403 (1976); J. Phys. 81, 2340 (1977); J. Comput. Phys. 28, 395 (1978).en_US
dc.identifier.citedreferenceJ. R. Barker, J. Chem. Phys. 72, 3686 (1980).en_US
dc.identifier.citedreferenceS. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973).en_US
dc.identifier.citedreferenceG. Z. Whitten and B. S. Rabinovitch, J. Chem. Phys. 38, 2466 (1963); 41, 1883 (1964).en_US
dc.identifier.citedreference(a) M. Quack, J. Chem. Phys. 69, 1282 (1978); (b) Chem. Phys. Lett. 65, 140 (1979); (c) Ber. Bunsenges. Phys. Chem. 83, 757 (1979); (d) 85, 318 (1981); Dynamics of the Excited State, edited by K. P. Lawley (Wiley, New York, 1982), 395.en_US
dc.identifier.citedreferenceA. C. Baldwin and J. R. Barker, J. Chem. Phys. 74, 3823 (1981).en_US
dc.identifier.citedreferenceJ.‐M. Zellweger, T. C. Brown, and J. R. Barker, J. Phys. Chem. (to be published).en_US
dc.identifier.citedreferenceFor detailed treatments of heterogeneous deactivation and mass transport to the cell walls in other systems, see (a) R. G. Gilbert, T. T. Nguyen, and K. D. King, Int. J. Chem. Kinet. 11, 317 (1979); (b) R. G. Gilbert and K. D. King, Chem. Phys. 49, 367 (1980).en_US
dc.identifier.citedreferenceT. C. Brown, K. D. King, J.‐M. Zellweger, and J. R. Barker, Ber. Bunsenges. Phys. Chem. 89, 301 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.