Show simple item record

Profiling and modeling of dc nitrogen microplasmas

dc.contributor.authorWilson, Chester G.en_US
dc.contributor.authorGianchandani, Yogesh B.en_US
dc.contributor.authorArslanbekov, Robert R.en_US
dc.contributor.authorKolobov, Vladimiren_US
dc.contributor.authorWendt, Amy E.en_US
dc.date.accessioned2010-05-06T21:17:18Z
dc.date.available2010-05-06T21:17:18Z
dc.date.issued2003-09-01en_US
dc.identifier.citationWilson, Chester G.; Gianchandani, Yogesh B.; Arslanbekov, Robert R.; Kolobov, Vladimir; Wendt, Amy E. (2003). "Profiling and modeling of dc nitrogen microplasmas." Journal of Applied Physics 94(5): 2845-2851. <http://hdl.handle.net/2027.42/69877>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69877
dc.description.abstractThis article explores electric current and field distributions in dc microplasmas, which have distinctive characteristics that are not evident at larger dimensions. These microplasmas, which are powered by coplanar thin-film metal electrodes with 400-μm minimum separations on a glass substrate, are potentially useful for microsystems in both sensing and microfabrication contexts. Experiments in N2N2 ambient show that electron current favors electrode separations of 4 mm at 1.2 Torr, reducing to 0.4 mm at 10 Torr. The glow region is confined directly above the cathode, and within 200–500 μm of its lateral edge. Voltage gradients of 100 kV/m exist in this glow region at 1.2 Torr, increasing to 500 kV/m at 6 Torr, far in excess of those observed in larger plasmas. Numerical simulations indicate that the microplasmas are highly nonquasineutral, with a large ion density proximate to the cathode, responsible for a dense space-charge region, and the strong electric fields in the glow region. It is responsible for the bulk of the ionization and has a bimodal electron energy distribution function, with a local peak at 420 eV. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent755572 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleProfiling and modeling of dc nitrogen microplasmasen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEECS Department, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsinen_US
dc.contributor.affiliationotherCFD Research Corp., Huntsville, Alabamaen_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsinen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69877/2/JAPIAU-94-5-2845-1.pdf
dc.identifier.doi10.1063/1.1595143en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceC. Wilson and Y. Gianchandani, J. Microelectromech. Syst. JMIYET10, 50 (2001).en_US
dc.identifier.citedreferenceC. Wilson and Y. Gianchandani, IEEE International Conference On Micro Electro Mechanical Systems, 2002, p. 248.en_US
dc.identifier.citedreferenceG. Jenkins and A. Manz, Proceedings Micro. Total Analysis Systems, 2001, p. 349.en_US
dc.identifier.citedreferenceJ. C. T. Eijkel, H. Stoeri, and A. Manz, Anal. Chem. ANCHAM72, 2547 (2000).en_US
dc.identifier.citedreferenceJ. A. Hopwood, J. Microelectromech. Syst. JMIYET9, 309 (2000).en_US
dc.identifier.citedreferenceS. J. Park, J. Chen, C. Liu, and J. G. Eden, Appl. Phys. Lett. APPLAB78, 419 (2001).en_US
dc.identifier.citedreferenceC. G. Wilson, A. E. Wendt, and Y. B. Gianchandani, Technical Digest, Solid-State Sensor, Actuator, and Microsystems Workshop, 2002, p. 370.en_US
dc.identifier.citedreferenceC. G. Wilson, Ph.D. Thesis, University of Wisconsin-Madison, 2003.en_US
dc.identifier.citedreferenceA. L. Ward, J. Appl. Phys. JAPIAU33, 2789 (1962).en_US
dc.identifier.citedreferenceP. Bayle, J. Vacquie, and M. Bayle, Phys. Rev. A PLRAAN34, 360 (1985).en_US
dc.identifier.citedreferenceD. B. Graves and K. F. Jensen, IEEE Trans. Plasma Sci. ITPSBD14, 78 (1986).en_US
dc.identifier.citedreferenceM. Surendra, D. B. Graves, and G. M. Jellum, Phys. Rev. A PLRAAN41, 1112 (1990).en_US
dc.identifier.citedreferenceM. Surendra, D. B. Graves, and L. S. Plano, J. Appl. Phys. JAPIAU41, 1112 (1990).en_US
dc.identifier.citedreferenceJ. P. Boeuf, J. Appl. Phys. JAPIAU63, 1342 (1987).en_US
dc.identifier.citedreferenceD. A. Doughty, E. A. Den Hartog, and J. E. Lawler, Phys. Rev. Lett. PRLTAO58, 2668 (1987).en_US
dc.identifier.citedreferenceT. J. Sommerer, J. E. Lawler, and W. N. G. Hitchon, J. Appl. Phys. JAPIAU64, 1775 (1988).en_US
dc.identifier.citedreferenceT. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler, Phys. Rev. A PLRAAN39, 6356 (1989).en_US
dc.identifier.citedreferenceCFD-ACE+ User Manual, CFD Research Corporation, Huntsville, AL, 2002.en_US
dc.identifier.citedreferenceYu. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, Contrib. Papers of HAKONE VII Conference, 2000, Vol. 1, p. 149.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.