Show simple item record

Lattice dynamics and specific heat of α‐helical poly(L‐alanine)

dc.contributor.authorDatye, Vandana K.en_US
dc.contributor.authorKrimm, Samuelen_US
dc.date.accessioned2010-05-06T21:17:56Z
dc.date.available2010-05-06T21:17:56Z
dc.date.issued1986-06-15en_US
dc.identifier.citationDatye, Vandana K.; Krimm, S. (1986). "Lattice dynamics and specific heat of α‐helical poly(L‐alanine)." The Journal of Chemical Physics 84(12): 6989-6996. <http://hdl.handle.net/2027.42/69884>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69884
dc.description.abstractWe have calculated the phonon dispersion relation in α‐poly(L‐alanine) with all atoms in the chemical repeat explicitly included and using a recently refined force field for the polypeptide chain. The phonon density of states shows very good agreement with the inelastic neutron scattering data for this polypeptide. The specific heat for T<150 K yields better agreement with experiment than did earlier calculations. At higher temperatures the discrepancy with experiment remains. We present a simple model calculation which suggests that the source of this discrepancy may lie in the anharmonicity of the methyl torsion mode.en_US
dc.format.extent3102 bytes
dc.format.extent573035 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLattice dynamics and specific heat of α‐helical poly(L‐alanine)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69884/2/JCPSA6-84-12-6989-1.pdf
dc.identifier.doi10.1063/1.450620en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceV. M. Naik and S. Krimm, Biophys. J. (in press).en_US
dc.identifier.citedreferenceA. M. Dwivedi and S. Krimm, Biopolymers 23, 923 (1984).en_US
dc.identifier.citedreferenceM. V. Krishnan and V. D. Gupta, Chem. Phys. Lett. 6, 231 (1970).en_US
dc.identifier.citedreferenceK. Itoh and T. Shimanouchi, Biopolymers 9, 383 (1970).en_US
dc.identifier.citedreferenceB. Fanconi, W. E. Small, and W. L. Peticolas, Biopolymers 10, 1277 (1971).en_US
dc.identifier.citedreferenceV. D. Gupta, H. Boutin, and S. Trevino, Nature 214, 1325 (1967).en_US
dc.identifier.citedreferenceW. Drexel and W. L. Peticolas, Biopolymers 14, 715 (1975).en_US
dc.identifier.citedreferenceM. Daurel, P. Delhaes, and E. Dupart, Biopolymers 14, 801 (1975).en_US
dc.identifier.citedreferenceS. Arnott and S. D. Dover, J. Mol. Biol. 30, 209 (1967).en_US
dc.identifier.citedreferenceA. M. Dwivedi and S. Krimm, J. Phys. Chem. 88, 620 (1984).en_US
dc.identifier.citedreferenceIn the case of a helix, the wave vector lies along the screw‐symmetry axis, and hence the dynamical matrix can be factored at all points in the Brillouin zone. Thus, the formalism at k  =  0k=0 is valid for all k. A representative article that describes the calculation of the optically active normal modes using the GF method is H. Sugeta and T. Miyazawa, J. Chem. Phys. 47, 2034 (1967). While it is computationally efficient to perform the calculation using Cartesian coordinates, the normal modes are more easily visualized from the potential energy distribution in local symmetry coordinates. Hence our computations were done using the traditional GF method as described in the above article.en_US
dc.identifier.citedreferenceN. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Reinhart, and Winston, Philadelphia, 1976).en_US
dc.identifier.citedreferenceS. Ataka and M. Tasumi, J. Mol. Struct. (in press). An earlier version, which does not include hydrogen bonds, was used by M. Tasumi, H. Takeuchi, S. Ataka, A. M. Dwivedi, and S. Krimm, Biopolymers 21, 711 (1982).en_US
dc.identifier.citedreferenceP. Dean, Rev. Mod. Phys. 44, 127 (1972).en_US
dc.identifier.citedreferenceG. Zerbi, in Advances in Infrared and Raman Spectroscopy (Wiley, New York, 1984), Vol. 11.en_US
dc.identifier.citedreferenceInternational Mathematical and Statistical Library, Vol. 2, Chap. I, Interpolation Routines, 1984.en_US
dc.identifier.citedreferenceS. Krimm and Y. Abe, Proc. Natl. Acad. Sci. U.S.A. 69, 2788 (1972).en_US
dc.identifier.citedreferenceW. H. Moore and S. Krimm, Proc. Natl. Acad. Sci. U.S.A. 72, 4933 (1975).en_US
dc.identifier.citedreferenceT. C. Cheam and S. Krimm, Chem. Phys. Lett. 107, 613 (1984).en_US
dc.identifier.citedreferenceW. H. Moore and S. Krimm, Biopolymers 15, 2465 (1976).en_US
dc.identifier.citedreferenceJ. E. Lynch, G. C. Summerfield, L. A. Feldkamp, and J. S. King, J. Chem. Phys. 48, 912 (1968).en_US
dc.identifier.citedreferenceE. S. R. Gopal, Specific Heats at Low Temperatures (Plenum, New York, 1966).en_US
dc.identifier.citedreferenceL. Finegold (private communication).en_US
dc.identifier.citedreferenceD. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, Oxford, 1969).en_US
dc.identifier.citedreferenceL. Finegold and P. K. Kumar, Thermochim. Acta 48, 51 (1981).en_US
dc.identifier.citedreferenceM. Daurel, P. Delhaes, and P. Dupart, Biopolymers 15, 415 (1976).en_US
dc.identifier.citedreferenceU. Gaur and B. Wunderlich, J. Phys. Chem. Ref. Data 12, 65 (1985).en_US
dc.identifier.citedreferenceW. Press, Single Particle Rotations in Molecular Physics (Springer, New York, 1981).en_US
dc.identifier.citedreferenceK. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10, 428 (1942).en_US
dc.identifier.citedreferenceJ. F. Rabolt, W. H. Moore, and S. Krimm, Macromolecules 10, 1065 (1977).en_US
dc.identifier.citedreferenceT. C. Cheam and S. Krimm, J. Chem. Phys. 82, 1631 (1985).en_US
dc.identifier.citedreferenceI. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).en_US
dc.identifier.citedreferenceBessel Functions, BAAS Mathematical Tables (Cambridge University, Cambridge, 1950), Vol. 6.en_US
dc.identifier.citedreferenceL. J. Briggs and A. N. Lowan, Table of the Bessel Functions J0(z)J0(z) and J1(z)J1(z) for Complex Arguments (Columbia University, New York, 1943).en_US
dc.identifier.citedreferenceL. Fox, A Short Table for Bessel Functions of Integer Orders and Large Arguments (Cambridge University, Cambridge, 1954).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.