Show simple item record

Pseudopotential SCF–MO studies of hypervalent compounds. II. XeF+5 and XeF6

dc.contributor.authorRothman, Michael J.en_US
dc.contributor.authorBartell, Lawrence S.en_US
dc.contributor.authorEwig, Carl S.en_US
dc.contributor.authorVan Wazer, John R.en_US
dc.date.accessioned2010-05-06T21:18:51Z
dc.date.available2010-05-06T21:18:51Z
dc.date.issued1980-07-01en_US
dc.identifier.citationRothman, Michael J.; Bartell, Lawrence S.; Ewig, Carl S.; Van Wazer, John R. (1980). "Pseudopotential SCF–MO studies of hypervalent compounds. II. XeF+5 and XeF6." The Journal of Chemical Physics 73(1): 375-381. <http://hdl.handle.net/2027.42/69894>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69894
dc.description.abstractNew evidence bearing upon the anomalous properties of xenon hexafluoride has been obtained via the ab initio molecular orbital approach applied successfully to the di‐ and tetrafluorides in paper I. Structures of both XeF+5 and XeF6 are governed by a stereochemically active lone pair. In the case of the square–pyramidal cation the Fax–Xe–Feq angle calculated for the bare ion is within 2° of the value observed in the crystalline complex. For the hexafluoride, however, the calculated deformation from Oh symmetry is appreciably greater than that deduced from electron diffraction intensities. Nevertheless, the results of calculations are in sufficient conformity with the Bartell–Gavin, Pitzer–Bernstein interpretation and at variance with the ’’electronic‐isomers’’ interpretation to leave little doubt about the answer. With increasing fluorination in the XeFn series the HOMO–LUMO energy difference decreases and the second‐order Jahn–Teller effect is enhanced. Increasing fluorination (and increased positive charge on Xe) also shortens bond lengths; calculated shortenings parallel observed shortenings. The deformation of XeF6 from Oh is along t1u bend and stretch coordinates to a C3v structure with long bonds adjacent to the lone pair, as expected according to the valence‐shell–electron‐pair‐repulsion model. Pure t2g deformations are destabilizing but anharmonic t1u–t2g coupling significantly stabilizes the deformation. Steric aspects of the structure and force field are diagnosed and found to be minor. Values for the force constants f44, f55, f̄4444, f̄444′4′, and f̄445 are derived and found to be of the magnitude forecast in the Bartell–Gavin and Pitzer–Bernstein treatments except that the calculations do not reproduce the delicate balances believed to lead to almost free pseudorotation in XeF6.en_US
dc.format.extent3102 bytes
dc.format.extent611800 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePseudopotential SCF–MO studies of hypervalent compounds. II. XeF+5 and XeF6en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Chemistry, Vanderbilt University, Nashville, Tennessee 37235en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69894/2/JCPSA6-73-1-375-1.pdf
dc.identifier.doi10.1063/1.439884en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceSee, for example, the discussions in Noble‐Gas Compounds, edited by H. H. Hyman (University of Chicago, Chicago, 1963) and the references therein.en_US
dc.identifier.citedreferenceB. Weinstock, Chem. Eng. News 42, 86 (1964).en_US
dc.identifier.citedreferenceL. S. Bartell, R. M. Gavin, Jr., H. B. Thompson, and C. L. Chernick, J. Chem. Phys. 43, 2547 (1965).en_US
dc.identifier.citedreferenceB. Weinstock, E. E. Weaver, and C. P. Knop, Inorg. Chem. 5, 2189 (1966); F. Schreiner, D. W. Osborne, J. G. Malm, and G. N. McDonald, J. Chem. Phys. 51, 4838 (1969).en_US
dc.identifier.citedreferenceL. S. Bartell and R. M. Gavin, Jr., J. Chem. Phys. 48, 2466 (1968).en_US
dc.identifier.citedreferenceR. F. Code, W. E. Falconer, W. Klemperer, and I. Ozier, J. Chem. Phys. 47, 4955 (1967).en_US
dc.identifier.citedreferenceW. E. Falconer, A. Büchler, J. L. Stauffer, and W. Klemperer, J. Chem. Phys. 48, 312 (1968).en_US
dc.identifier.citedreferenceG. L. Goodman, J. Chem. Phys. 56, 5038 (1972).en_US
dc.identifier.citedreferenceR. M. Gavin, Jr. and L. S. Bartell, J. Chem. Phys. 48, 2460 (1968).en_US
dc.identifier.citedreferenceK. Hedberg, S. H. Peterson, R. R. Ryan, and B. Weinstock, J. Chem. Phys. 44, 1726 (1966).en_US
dc.identifier.citedreferenceH. H. Claassen, G. L. Goodman, and H. Kim, J. Chem. Phys. 56, 5042 (1972).en_US
dc.identifier.citedreferenceC. R. Brundle, G. R. Jones, and H. Basch, J. Chem. Phys. 55, 1098 (1971).en_US
dc.identifier.citedreferenceU. Nielsen, R. Haensel, and W. H. E. Schwarz, J. Chem. Phys. 61, 3581 (1974).en_US
dc.identifier.citedreferenceL. S. Bernstein and K. S. Pitzer, J. Chem. Phys. 62, 2530 (1975).en_US
dc.identifier.citedreferenceW. E. Falconer, M. J. Vasile, and F. A. Stevie, J. Chem. Phys. 66, 5335 (1977).en_US
dc.identifier.citedreferenceK. Hedberg, as reported in Ref. 17.en_US
dc.identifier.citedreferenceK. S. Pitzer, and L. S. Bernstein, J. Chem. Phys. 63, 3849 (1975).en_US
dc.identifier.citedreferenceSee C. Trindle, S. N. Datta, and T. D. Bouman, Int. J. Quantum Chem. 11, 627 (1977). These authors suggest that the time‐dependent behavior observed in Raman spectra may be characteristic of the XeF6XeF6 system rather than an artifact of the apparatus, citing prior work to the effect that systems far from equilibrium may not relax quickly to equilibrium. Trindle et al., however, advance no arguments to make it plausible why such arguments should apply to xenon hexafluoride vibrational relaxations over a modest temperature drop. Neither do they discuss the time lags in UV spectra.en_US
dc.identifier.citedreferenceR. J. Gillespie, in Noble‐Gas Compounds, edited by H. H. Hyman (University of Chicago, Chicago, 1963), p. 333; see also R. J. Gillespie, J. Chem. Ed. 40, 295 (1963).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr. and W. N. Lipscomb, Ref. 1, p. 347.en_US
dc.identifier.citedreferenceL. L. Lohr, Jr., Bull. Am. Phys. Soc. 12, 295 (1967).en_US
dc.identifier.citedreferenceS. Y. Wang and L. L. Lohr, Jr., J. Chem. Phys. 60, 3901 (1974); 62, 2013 (E) (1975).en_US
dc.identifier.citedreferenceE. W. Phillips, J. W. D. Connolly, and S. B. Trickey, Chem. Phys. Lett. 17, 203 (1972).en_US
dc.identifier.citedreferenceH. Basch, J. W. Moskowitz, C. Hollister, and D. Hankin, J. Chem. Phys. 55, 1922 (1971).en_US
dc.identifier.citedreferenceL. S. Bartell, M. J. Rothman, C. S. Ewig, and J. R. Van Wazer, J. Chem. Phys. 73, 367 (1980).en_US
dc.identifier.citedreferenceA. Gavezzotti, M. J. Rothman, and L. S. Bartell (unpublished research).en_US
dc.identifier.citedreferenceK. Leary, D. H. Templeton, A. Zalkin, and N. Bartlett, Inorg. Chem. 12, 1726 (1973).en_US
dc.identifier.citedreferenceN. Bartlett, M. Gennis, D. D. Gibler, B. K. Morrell, and A. Zalkin, Inorg. Chem. 12, 1717 (1973).en_US
dc.identifier.citedreferenceO. P. Charkin, A. E. Smolyar, A. S. Zyubin, and N. M. Klimenko, J. Struct. Chem. 15, 461 (1974).en_US
dc.identifier.citedreferenceS. Reichman and F. Schreiner, J. Chem. Phys. 51, 2355 (1969).en_US
dc.identifier.citedreferenceJ. H. Burns, P. A. Agron, and H. A. Levy, in Noble‐Gas Compounds, edited by H. H. Hyman (University of Chicago, Chicago, 1963), p. 211.en_US
dc.identifier.citedreferenceSee AIP document JCPSA‐73‐375‐98 for 98 pages of related materials including atomic core orbitals, potential and kinetic energies, and density matrices and molecular orbitals for XeF2,XeF2, XeF4,XeF4, XeF5+,XeF5+, and XeF6.XeF6. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 E. 45 St., New York, N.Y. 10017. The price is $1.50 for each microfiche (98 pages), or $5 for photocopies of up to 30 pages and $0.15 for each pageover 30 pages. Airmail is additional. Make checks payable to American Institute of Physics. This material appears in the monthly Current Physics Microform edition of all journals published by AIP, on the frames following this article.en_US
dc.identifier.citedreferenceXenon‐fluorine bond lengths for XeF6XeF6 and XeF5+XeF5+ are average values.en_US
dc.identifier.citedreferenceR. R. Ryan and D. T. Cromer, Inorg. Chem. 11, 2322 (1972).en_US
dc.identifier.citedreferenceS. H. Mastin, R. R. Ryan, and L. B. Asprey, Inorg. Chem. 9, 2100 (1970).en_US
dc.identifier.citedreferenceG. R. Jones, R. D. Burbank, and N. Bartlett, Inorg. Chem. 9, 2264 (1970).en_US
dc.identifier.citedreferenceR. K. Heenan and A. G. Robiette, J. Mol. Struct. 55, 191 (1979).en_US
dc.identifier.citedreferenceJ. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.