Show simple item record

Isotope effects in the vibrational deactivation of large molecules

dc.contributor.authorToselli, Beatriz M.en_US
dc.contributor.authorBarker, John R.en_US
dc.date.accessioned2010-05-06T21:19:31Z
dc.date.available2010-05-06T21:19:31Z
dc.date.issued1992-08-01en_US
dc.identifier.citationToselli, Beatriz M.; Barker, John R. (1992). "Isotope effects in the vibrational deactivation of large molecules." The Journal of Chemical Physics 97(3): 1809-1817. <http://hdl.handle.net/2027.42/69901>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69901
dc.description.abstractCollisional deactivation of highly vibrationally excited gas phase toluene‐d8 and benzene‐d6 pumped at 248 nm, has been investigated by monitoring the time resolved infrared fluorescence from the C–D stretch modes near 4.3 μm. For toluene‐d8, energy transfer data were obtained for about 20 collider gases, including unexcited toluene‐d8; for benzene‐d6, only a few colliders were investigated. For both systems the data were analyzed by an inversion technique that converts the fluorescence decay to the bulk average energy, from which is calculated the average energy transferred per collision, ⟨⟨ΔE⟩⟩inv. Data obtained earlier for benzene‐d0 were reanalyzed and the revised results are reported. Results for both normal and deuterated excited species show ⟨⟨ΔE⟩⟩inv to be nearly directly proportional to the vibrational energy ⟨⟨E⟩⟩inv of the excited molecule from 5 000 to 25 000 cm−1. However, for pure toluene‐d8, benzene‐d6, and a few other collider gases at high energies, the slope of the ⟨⟨ΔE⟩⟩inv vs ⟨⟨E⟩⟩inv curve is reduced and even becomes negative at sufficiently high energies. The results obtained for normal and deuterium‐containing species are discussed in terms of possible quantum effects and mechanisms for energy transfer. In particular, it is considered likely that V–T/R energy transfer dominates over V–V, and the lowest frequency vibrational modes are the conduits for the energy transfer, in agreement with results for small molecules. Attention is called to a fundamental difference between classical and quantum statistics and how this difference may adversely affect classical trajectory simulations of large molecules.en_US
dc.format.extent3102 bytes
dc.format.extent1197016 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIsotope effects in the vibrational deactivation of large moleculesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic, and Space Sciences, Department of Chemistry, Space Physics Research Laboratory, The University of Michigan, Ann Arbor, Michigan 48109‐2143en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69901/2/JCPSA6-97-3-1809-1.pdf
dc.identifier.doi10.1063/1.463168en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceFor a recent review, see I. Oref and D. C. Tardy, Chem. Rev. 30, 1407 (1990).en_US
dc.identifier.citedreference(a) M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983), and references therein; (b) J. R. Barker, J. Phys. Chem. 88, 11 (1984); (c) J. R. Barker and R. E. Golden, 88, 1012 (1984).en_US
dc.identifier.citedreferenceJ. Shi and J. R. Barker, J. Chem. Phys. 88, 6219 (1988); J. Shi, D. Bern-feld, and J. R. Barker, 88, 6211 (1988).en_US
dc.identifier.citedreferenceJ. M. Zellweger, T. C. Brown, and J. R. Barker, J. Chem. Phys. 83, 6261 (1985).en_US
dc.identifier.citedreferenceM. L. Yerram, J. D. Brenner, K. D. King, and J. R. Barker, J. Phys. Chem. 94, 6341 (1990).en_US
dc.identifier.citedreferenceB. M. Toselli, J. D. Brenner, M. L. Yerram, W. E. Chin, K. D. King, and J. R. Barker, J. Chem. Phys. 95, 176 (1991).en_US
dc.identifier.citedreferenceJ. R. Barker, M. J. Rossi, and J. R. Pladziewicz, Chem. Phys. Lett. 90, 99 (1982).en_US
dc.identifier.citedreferenceB. M. Toselli and J. R. Barker, J. Chem. Phys. 95, 8108 (1991).en_US
dc.identifier.citedreferenceB. M. Toselli, T. L. Walunas, and J. R. Barker, J. Chem. Phys. 92, 4793 (1990).en_US
dc.identifier.citedreferenceA. Chimbayo, B. M. Toselli, and J. R. Barker (manuscript in preparation).en_US
dc.identifier.citedreferenceH. Hippler and J. Troe, in Bimolecular Collisions, edited by M. N. R. Ashford and J. E. Baggott (Royal Society of Chemistry, London, 1989), p. 209.en_US
dc.identifier.citedreferenceH. Hippler, L. Lindemann, and J. Troe, J. Chem. Phys. 83, 3906 (1985); H. Hippler, B. Otto, and J. Troe, Ber. Bunsenges. Phys. Chem. 93, 428 (1989).en_US
dc.identifier.citedreferenceH. Hippler, J. Troe, and J. Wendelken, J. Chem. Phys. 78, 6709, 6718 (1983).en_US
dc.identifier.citedreferenceM. Heymann, H. Hippler, D. Nahr, H. J. Plach, and J. Troe, J. Phys. Chem. 92, 5507 (1988).en_US
dc.identifier.citedreferenceJ. E. Dove, H. Hippler, and J. Troe, J. Chem. Phys. 82, 1907 (1985); M. Heymann, H. Hippler, H. J. Plach, and J. Troe, 87, 3867 (1987).en_US
dc.identifier.citedreferenceM. Damm, F. Deckert, H. Hippler, and J. Troe, J. Phys. Chem. 95, 2005 (1991).en_US
dc.identifier.citedreferenceW. Jalenak, R. E. Weston, Jr., T. J. Sears, and G. W. Flynn, J. Chem. Phys. 89, 2015 (1988).en_US
dc.identifier.citedreferenceJ. Z. Chou, S. A. Hewitt, J. F. Hershberger, B. B. Brady, G. B. Spector, L. Chia, and G. W. Flynn, J. Chem. Phys. 91, 5392 (1989); J. Z. Chou, S. A. Hewitt, J. F. Hershberger, and G. W. Flynn, 93, 8474 (1990).en_US
dc.identifier.citedreferenceA. J. Sedlacek, R. E. Weston, and G. W. Flynn, J. Chem. Phys. 94, 6483 (1991).en_US
dc.identifier.citedreference(a) D. C. Tardy and B. S. Rabinovitch, Chem. Rev. 77, 369 (1977); (b) M. Quack and J. Troe, Gas Kinetics and Energy Transfer (Chemical Society, London, 1977), Vol. 2, p.175.en_US
dc.identifier.citedreferenceR. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990), Chap. 5.en_US
dc.identifier.citedreferenceR. G. Gilbert, J. Chem. Phys. 80, 5501 (1984).en_US
dc.identifier.citedreferenceK. F. Lim and R. G. Gilbert, J. Phys. Chem. 94, 72, 77 (1990).en_US
dc.identifier.citedreference(a) K. F. Lim and R. G. Gilbert, J. Chem. Phys. 84, 6129 (1986); (b) K. F. Lim and R. G. Gilbert, 92, 1819 (1990).en_US
dc.identifier.citedreferenceR. G. Gilbert and R. N. Zare, Chem. Phys. Lett. 167, 407 (1990).en_US
dc.identifier.citedreferenceB. M. Toselli and J. R. Barker, Chem. Phys. Lett. 174, 304 (1990).en_US
dc.identifier.citedreferenceB. J. Orr and I. W. M. Smith, J. Phys. Chem. 91, 6106 (1987).en_US
dc.identifier.citedreferenceJ. L. Knee, C. E. Ottis, and P. M. Johnson, J. Chem. Phys. 81, 4455 (1984).en_US
dc.identifier.citedreferenceJ. S. Swenton, in Isotopes in Organic Chemistry, edited by E. Buncel and C. C. Lee (Elsevier Scientific, Amsterdam, 1975), p. 241.en_US
dc.identifier.citedreferenceT. E. Martin and A. H. Kalantar, Chem. Phys. Lett. 1, 623 (1968); P. M. Johnson and M. Studer, 18, 341 (1973).en_US
dc.identifier.citedreferenceR. H. Page, R. H. Shen, and Y. T. Lee, J. Chem. Phys. 88, 5362 (1988); J. A. Draeger, Spectrochim. Acta 41, 607 (1985); H. D. Rudolph, H. Dreizler, A. Jauschke, and P. Wendling, Z. Naturforsch. 22, 940 (1967); N. Fuson, C. Garrigou-Lagrange, and M. L. Josien, Spectrochim. Acta 16, 106 (1960); T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Vol. I, edited by NSRDS (1972); L. Goodman, A. G. Ozkabak, and S. N. Thakur, J. Phys. Chem. 95, 9044 (1991).en_US
dc.identifier.citedreferenceG. Z. Whitten and B. S. Rabinovitch, J. Chem. Phys. 41, 1883 (1964).en_US
dc.identifier.citedreference(a) W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973); (b) P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley, New York, 1972), p. 137.en_US
dc.identifier.citedreferenceT. C. Brown, K. D. King, and R. G. Gilbert, Int. J. Chem. Kinet. 20, 549 (1988).en_US
dc.identifier.citedreferenceT. C. Brown, Ph.D. thesis, The University of Adelaide, Australia, 1988.en_US
dc.identifier.citedreferenceJ. D. Brenner and J. R. Barker, Astrophys. J. Lett. 388, L39 (1992).en_US
dc.identifier.citedreferenceR. G. Gilbert (private communication, 1991).en_US
dc.identifier.citedreferenceR. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).en_US
dc.identifier.citedreferenceF. I. Tanczos, J. Chem. Phys. 30, 1119 (1959).en_US
dc.identifier.citedreferenceJ. T. Yardley, Introduction to Molecular Energy Transfer (Academic, New York, 1980), Chap. 4.en_US
dc.identifier.citedreference(a) S. Hassoon, I. Oref, and C. Steel, J. Chem. Phys. 89, 1743 (1988); (b) I. M. Morgulis, S. S. Sapers, C. Steel, and I. Oref, 90, 923 (1989); (c) A. Pashutzki and I. Oref, J. Phys. Chem. 92, 178 (1988).en_US
dc.identifier.citedreferenceH. G. Löhmannsröben and K. Luther, Chem. Phys. Lett. 144, 473 (1988); K. Luther and K. Reihs, Ber. Bunsenges. Phys. Chem. 92, 442 (1988); K. Luther (private communication).en_US
dc.identifier.citedreferenceG. Lendvay and G. C. Schatz, J. Phys. Chem. 94, 8864 (1990).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.