Weber's Mixed Boundary‐Value Problem in Electrodynamics
dc.contributor.author | Laporte, Otto | en_US |
dc.contributor.author | Fowler, R. G. | en_US |
dc.date.accessioned | 2010-05-06T21:21:27Z | |
dc.date.available | 2010-05-06T21:21:27Z | |
dc.date.issued | 1967-03 | en_US |
dc.identifier.citation | Laporte, O.; Fowler, R. G. (1967). "Weber's Mixed Boundary‐Value Problem in Electrodynamics." Journal of Mathematical Physics 8(3): 518-522. <http://hdl.handle.net/2027.42/69922> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/69922 | |
dc.description.abstract | Electrodynamics problems with mixed boundary values promise to assume increasing practical importance in fields such as plasma physics. A new method of attacking such problems in three dimensions is presented and discussed. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 291895 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Weber's Mixed Boundary‐Value Problem in Electrodynamics | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, Michigan | en_US |
dc.contributor.affiliationother | University of Oklahoma, Norman, Oklahoma | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/69922/2/JMAPAQ-8-3-518-1.pdf | |
dc.identifier.doi | 10.1063/1.1705226 | en_US |
dc.identifier.source | Journal of Mathematical Physics | en_US |
dc.identifier.citedreference | L. Nobili, Poggendorf Ann. 9, 183 (1827); 10, 393,410 (1827). | en_US |
dc.identifier.citedreference | B. Riemann, Poggendorf Ann. 95, 130 (1855). | en_US |
dc.identifier.citedreference | H. Weber, Z. Angew. Math. 75, 75 (1873). | en_US |
dc.identifier.citedreference | O. Laporte and R. G. Fowler, Phys. Rev. 148, 170 (1966). | en_US |
dc.identifier.citedreference | C. J. Tranter, Quart. J. Math. 2, 60 (1951). | en_US |
dc.identifier.citedreference | N. Nielsen, Handbuch der Theorie der Cylinder funktionen (B. G. Teubner, Leipzig, 1905), formulas (4) and (11) of Sec. 74, p. 191 et seq. See also G. N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, England, 1958), Sec. 13.4, Eq. (2), p. 401. | en_US |
dc.identifier.citedreference | See R. Courant and D. Hilbert, Methoden der Mathematischen Physik (Julius Springer, Leipzig, 1924), Vol. I, p. 74. | en_US |
dc.identifier.citedreference | A. Sommerfeld, Ann. Physik 42, 389 (1943). | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.