Show simple item record

High-detectivity, normal-incidence, mid-infrared (λ ∼ 4 μm)InAs/GaAs(λ∼4μm)InAs/GaAs quantum-dot detector operating at 150 K

dc.contributor.authorStiff, A. D.en_US
dc.contributor.authorKrishna, Sanjayen_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorKennerly, S.en_US
dc.date.accessioned2010-05-06T21:22:16Z
dc.date.available2010-05-06T21:22:16Z
dc.date.issued2001-07-16en_US
dc.identifier.citationStiff, A. D.; Krishna, S.; Bhattacharya, P.; Kennerly, S. (2001). "High-detectivity, normal-incidence, mid-infrared (λ ∼ 4 μm)InAs/GaAs(λ∼4μm)InAs/GaAs quantum-dot detector operating at 150 K." Applied Physics Letters 79(3): 421-423. <http://hdl.handle.net/2027.42/69931>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69931
dc.description.abstractNormal-incidence InAs/GaAs quantum-dot detectors have been grown, fabricated, and characterized for mid-infrared detection in the temperature range from 78 to 150 K. Due to the presence of an Al0.3Ga0.7AsAl0.3Ga0.7As current blocking layer in the heterostructure, the dark current is very low, and at T = 100 K,T=100K, Idark = 1.7 pAIdark=1.7pA for Vbias = 0.1 V.Vbias=0.1V. The peak of the spectral response curve is at λ ∼ 4 μm,λ∼4μm, with Δλ/λ = 0.3Δλ/λ=0.3 and Vbias = 0.1 V.Vbias=0.1V. At T = 100 K,T=100K, for Vbias = 0.3 V,Vbias=0.3V, the peak detectivity, D∗,D∗, is 3×109 cm Hz1/2/W,3×109cmHz1/2/W, and the peak responsivity, Rp,Rp, is 2 mA/W with a photoconductive gain of g = 18.g=18. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent55491 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHigh-detectivity, normal-incidence, mid-infrared (λ ∼ 4 μm)InAs/GaAs(λ∼4μm)InAs/GaAs quantum-dot detector operating at 150 Ken_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherSensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland 20783en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69931/2/APPLAB-79-3-421-1.pdf
dc.identifier.doi10.1063/1.1385584en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceK. W. Berryman, S. A. Lyon, and M. Segev, Appl. Phys. Lett. APPLAB70, 1861 (1997).en_US
dc.identifier.citedreferenceJ. Phillips, K. Kamath, and P. Bhattacharya, Appl. Phys. Lett. APPLAB72, 2020 (1998).en_US
dc.identifier.citedreferenceD. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. APPLAB73, 1937 (1998).en_US
dc.identifier.citedreferenceS. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. APPLAB73, 2003 (1998).en_US
dc.identifier.citedreferenceP. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, J. Cryst. Growth JCRGAE227,228, 27 (2001).en_US
dc.identifier.citedreferenceM. Zandian, J. M. Arias, J. Bajaj, J. G. Pasko, L. O. Bubulac, and R. E. DeWarnes, J. Electron. Mater. JECMA524, 1207 (1995).en_US
dc.identifier.citedreferenceJ. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, IEEE J. Quantum Electron. IEJQA735, 936 (1999).en_US
dc.identifier.citedreferenceD. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. APPLAB76, 3301 (2000).en_US
dc.identifier.citedreferenceH. C. Liu, M. Gao, J. McCafferey, Z. R. Wasilewski, and S. Fafard, Appl. Phys. Lett. APPLAB78, 79 (2001).en_US
dc.identifier.citedreferenceL. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. APPLAB75, 3599 (1999).en_US
dc.identifier.citedreferenceJ. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, Phys. Rev. Lett. PRLTAO86, 4930 (2001).en_US
dc.identifier.citedreferenceS. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, Appl. Phys. Lett. APPLAB78, 1023 (2001).en_US
dc.identifier.citedreferenceS. D. Gunapala and K. M. S. V. Bandara, Homojunction and Quantum-Well Infrared Detectors, edited by M. H. Francombe and J. L. Vossen (Academic, San Diego, 1995), p. 113.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.