Cartan–Gram determinants for the simple Lie groups
dc.contributor.author | Wu, Alfred C. T. | en_US |
dc.date.accessioned | 2010-05-06T21:29:44Z | |
dc.date.available | 2010-05-06T21:29:44Z | |
dc.date.issued | 1982-11 | en_US |
dc.identifier.citation | Wu, Alfred C. T. (1982). "Cartan–Gram determinants for the simple Lie groups." Journal of Mathematical Physics 23(11): 2019-2021. <http://hdl.handle.net/2027.42/70011> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/70011 | |
dc.description.abstract | The Cartan–Gram determinants for the simple root systems are evaluated for the simple Lie groups An, Bn, Cn, Dn, and Ek (k=6,7,8). The determinants satisfy a linear recursion relation which turns out to be the same for all these groups. For the En family, the Cartan–Gram determinant contains an explicit factor of (9−n) which vanishes for n=9 and is negative for n>9. This gives a simple explanation why the En family terminates at E8. The Cartan–Gram determinant affords a systematic explanation for the nonexistence of the forbidden Dynkin diagrams. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 118344 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Cartan–Gram determinants for the simple Lie groups | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/70011/2/JMAPAQ-23-11-2019-1.pdf | |
dc.identifier.doi | 10.1063/1.525257 | en_US |
dc.identifier.source | Journal of Mathematical Physics | en_US |
dc.identifier.citedreference | E. B. Dynkin, Usp. Mat. Nauk. 2, No. 4 (20), 59 (1947); Transl. Am. Math. Soc. 9, 328 (1962). | en_US |
dc.identifier.citedreference | N. Jacobson, Lie Algebras (Wiley, New York, 1962). | en_US |
dc.identifier.citedreference | R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wiley, New York, 1974). | en_US |
dc.identifier.citedreference | B. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974). | en_US |
dc.identifier.citedreference | R. Slansky, “Group Theory for Unified Model Building,” Phys. Rep. 79, 1 (1981). | en_US |
dc.identifier.citedreference | A. O. Barut and R. Raczka, Theory of Group Representations & Applications (PWN Scientific Publishers, Warsaw, 1980), 2nd rev. ed. | en_US |
dc.identifier.citedreference | See, e.g., R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley‐Interscience, New York, 1953), Vol. 1, p. 34. | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.