Show simple item record

Cartan–Gram determinants for the simple Lie groups

dc.contributor.authorWu, Alfred C. T.en_US
dc.date.accessioned2010-05-06T21:29:44Z
dc.date.available2010-05-06T21:29:44Z
dc.date.issued1982-11en_US
dc.identifier.citationWu, Alfred C. T. (1982). "Cartan–Gram determinants for the simple Lie groups." Journal of Mathematical Physics 23(11): 2019-2021. <http://hdl.handle.net/2027.42/70011>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70011
dc.description.abstractThe Cartan–Gram determinants for the simple root systems are evaluated for the simple Lie groups An, Bn, Cn, Dn, and Ek (k=6,7,8). The determinants satisfy a linear recursion relation which turns out to be the same for all these groups. For the En family, the Cartan–Gram determinant contains an explicit factor of (9−n) which vanishes for n=9 and is negative for n>9. This gives a simple explanation why the En family terminates at E8. The Cartan–Gram determinant affords a systematic explanation for the nonexistence of the forbidden Dynkin diagrams.en_US
dc.format.extent3102 bytes
dc.format.extent118344 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCartan–Gram determinants for the simple Lie groupsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70011/2/JMAPAQ-23-11-2019-1.pdf
dc.identifier.doi10.1063/1.525257en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceE. B. Dynkin, Usp. Mat. Nauk. 2, No. 4 (20), 59 (1947); Transl. Am. Math. Soc. 9, 328 (1962).en_US
dc.identifier.citedreferenceN. Jacobson, Lie Algebras (Wiley, New York, 1962).en_US
dc.identifier.citedreferenceR. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wiley, New York, 1974).en_US
dc.identifier.citedreferenceB. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).en_US
dc.identifier.citedreferenceR. Slansky, “Group Theory for Unified Model Building,” Phys. Rep. 79, 1 (1981).en_US
dc.identifier.citedreferenceA. O. Barut and R. Raczka, Theory of Group Representations & Applications (PWN Scientific Publishers, Warsaw, 1980), 2nd rev. ed.en_US
dc.identifier.citedreferenceSee, e.g., R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley‐Interscience, New York, 1953), Vol. 1, p. 34.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.