Show simple item record

Implementing quantum gates on oriented optical isomers

dc.contributor.authorSola, Ignacio R.en_US
dc.contributor.authorMalinovsky, Vladimir S.en_US
dc.contributor.authorSantamaría, Jesusen_US
dc.date.accessioned2010-05-06T21:30:17Z
dc.date.available2010-05-06T21:30:17Z
dc.date.issued2004-06-15en_US
dc.identifier.citationSola, Ignacio R.; Malinovsky, Vladimir S.; Santamaría, Jesus (2004). "Implementing quantum gates on oriented optical isomers." The Journal of Chemical Physics 120(23): 10955-10960. <http://hdl.handle.net/2027.42/70017>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70017
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15268125&dopt=citationen_US
dc.description.abstractOptical enantiomers are proposed to encode molecular two-qubit information processing. Using sequences of pairs of nonresonant optimally polarized pulses, different schemes to implement quantum gates, and to prepare entangled states, are described. We discuss the role of the entanglement phase and the robustness of the pulse sequences which depend on the area theorem. Finally, possible scenarios to generalize the schemes to n-qubit systems are suggested. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent111414 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleImplementing quantum gates on oriented optical isomersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMichigan Center for Theoretical Physics and FOCUS Center, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Chemistry, Princeton University, Princeton, New Jersey 08544en_US
dc.contributor.affiliationotherDepartamento de Quimica Fisica I, Universidad Complutense, 28040 Madrid, Spainen_US
dc.contributor.affiliationotherDepartamento de Quimica Fisica I, Universidad Complutense, 28040 Madrid, Spainen_US
dc.identifier.pmid15268125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70017/2/JCPSA6-120-23-10955-1.pdf
dc.identifier.doi10.1063/1.1739403en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceD. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer Verlag, Berlin, 2000).en_US
dc.identifier.citedreferenceM. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).en_US
dc.identifier.citedreferenceJ. P. Palao and R. Kosloff, Phys. Rev. Lett. PRLTAO89, 188301 (2002); E. A. Shapiro, M. Spanner, and M. Yu. Ivanov, 91, 237901 (2003).en_US
dc.identifier.citedreferenceC. M. Tesch and R. de Vivie-Riedle, Phys. Rev. Lett. PRLTAO89, 157901 (2002).en_US
dc.identifier.citedreferenceS. Lloyd, Science SCIEAS261, 1569 (1993).en_US
dc.identifier.citedreferenceS. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A PLRAAN57, 822 (1998); J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. PRLTAO80, 3891 (1998).en_US
dc.identifier.citedreferenceY. Fujimura, L. González, K. Hoki, D. Kroner, J. Manz, and Y. Ohtsuki, Angew. Chem., Int. Ed. Engl. ACIEF539, 4586 (2000); L. González, D. Kröner, and I. R. Sola, J. Chem. Phys. JCPSA6115, 2519 (2001).en_US
dc.identifier.citedreferenceY. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, Chem. Phys. Lett. CHPLBC306, 1 (1999); 310, 578(E) (1999).en_US
dc.identifier.citedreferenceE. Deretey, M. Shapiro, and P. Brumer, J. Phys. Chem. A JPCAFH105, 9509 (2001); M. Shapiro and P. Brumer, Rep. Prog. Phys. RPPHAG66, 859 (2003).en_US
dc.identifier.citedreferenceA. Salam and W. J. Meath, J. Chem. Phys. JCPSA6106, 7865 (1997); K. Hoki, L. González, and Y. Fujimura, 116, 2433 (2002); Y. Ohta, K. Hoki, and Y. Fujimura, 116, 7509 (2002).en_US
dc.identifier.citedreferenceM. Shapiro, E. Frishman, and P. Brumer, Phys. Rev. Lett. PRLTAO84, 1669 (2000); E. Frishman, M. Shapiro, D. Gerbasi, and P. Brumer, J. Chem. Phys. JCPSA6119, 7237 (2003).en_US
dc.identifier.citedreferenceK. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. JCPSA6116, 8799 (2002); D. Kröner and L. González, Chem. Phys. CMPHC2298, 55 (2004).en_US
dc.identifier.citedreferenceFor fully overlapping resonant pulses (Δ=0) connecting qubit states ∣i⟩∣i⟩ and ∣f⟩∣f⟩ with the auxiliary state ∣E⟩∣E⟩ by the proper pulse polarizations with pulse area matching conditions: μEi(t)=μEj(t)=Ω0(t),μEi(t)=μEj(t)=Ω0(t), the Hamiltonian of the interaction among the coupled states in the RWA is  Hi,f,E=−[Ω0(t)/2](0 0 10 0 11 1 0).The Schrödinger equation for this Hamiltonian has analytical solution. If the initial state is in ∣i⟩,∣i⟩, the final wave function will be ∣ψ(t)⟩=½(1+cos A)∣i⟩−½(1−cos A)∣f⟩+(i/)sin A∣E⟩,∣ψ(t)⟩=12(1+cos A)∣i⟩−12(1−cos A)∣f⟩+(i/2)sin A∣E⟩, where A=∫Ω(t)dtA=∫Ω(t)dt is the pulse area. Population inversion from ∣i⟩∣i⟩ to ∣f⟩∣f⟩ is possible using π pulses. However, it is not possible to create 50:50 superposition states of ∣i⟩∣i⟩ and ∣f⟩∣f⟩ and at the same time avoid population in ∣E⟩,∣E⟩, that is, every superposition or entangled state prepared by resonant fully overlapping pulses would be contaminated by some population in the excited electronic state. In fact, for half π pulses ∣ψ(t)⟩=(∣i⟩−∣f⟩)/+i∣E⟩/∣ψ(t)⟩=(∣i⟩−∣f⟩)/2+i∣E⟩/2 so that 50% of the population is actually in ∣E⟩.∣E⟩.en_US
dc.identifier.citedreferenceC. S. Maierle and R. A. Harris, J. Chem. Phys. JCPSA6109, 3713 (1998).en_US
dc.identifier.citedreferenceV. S. Malinovsky and I. R. Sola (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.