Show simple item record

Energy‐Moment Methods in Quantum Mechanics

dc.contributor.authorDelos, J. B.en_US
dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2010-05-06T21:30:56Z
dc.date.available2010-05-06T21:30:56Z
dc.date.issued1967-10-15en_US
dc.identifier.citationDelos, J. B.; Blinder, S. M. (1967). "Energy‐Moment Methods in Quantum Mechanics." The Journal of Chemical Physics 47(8): 2784-2792. <http://hdl.handle.net/2027.42/70024>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70024
dc.description.abstractThree quantum‐mechanical computational techniques based on energy moments, μk = ∫ dqψ*(q)Hkψ(q)μk=∫dqψ*(q)Hkψ(q), and semimoments, νk(q′) = [Hkψ(q)]q = q′νk(q′)=[Hkψ(q)]q=q′, are formulated. The μ method, which employs the μk, is connected to the method of moments in probability theory, to the variational method, and to eigenvalue spectroscopy. The ν and λ methods, which employ semimoments, are related to local energy methods using one and several configuration points, respectively. An Nth‐order calculation, requiring 2N moments or semimoments, yields N approximate eigenvalues and eigenfunctions. In accordance with a conjectured convergence criterion, exact eigenstates are approached in the limit N→∞. From quantities obtained in a moments calculation, a lower bound on the ground‐state eigenvalue can also be determined using a refinement of Weinstein's criterion. A computational method for generating moments and semimoments is given and the μ method is applied to the linear harmonic oscillator.en_US
dc.format.extent3102 bytes
dc.format.extent578894 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnergy‐Moment Methods in Quantum Mechanicsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70024/2/JCPSA6-47-8-2784-1.pdf
dc.identifier.doi10.1063/1.1712298en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceThe method of moments is treated in many textbooks on mathematical statistics. See, for example, M. G. Kendall, The Advanced Theory of Statistics (Charles Griffin and Co., Ltd., London, 1946–1947) 2 Vols. Yu. V. Vorobyev, Method of Moments in Applied Mathematics (Gordon and Breach Science Publications, New York, 1965).en_US
dc.identifier.citedreferenceG. Horvay, Phys. Rev. 55, 70 (1939).en_US
dc.identifier.citedreferenceF. R. Halpern, Phys. Rev. 107, 1145 (1957); 109, 1836 (1958).en_US
dc.identifier.citedreferenceF. R. Halpern, Ann. Phys. (N.Y.) 7, 154 (1959).en_US
dc.identifier.citedreferenceS. M. Blinder, Intern. J. Quantum Chem. 1, 271 (1967).en_US
dc.identifier.citedreferenceS. M. Blinder, J. Chem. Phys. 41, 3412 (1964).en_US
dc.identifier.citedreferenceMoments are denoted by hkhk in Refs. 5 and 6.en_US
dc.identifier.citedreferenceSee, for example, G. Szegö, Orthogonal Polynomials (American Mathematical Society Colloquim Publications, New York, 1939), Vol. 23.en_US
dc.identifier.citedreferenceT. Carleman, Les Fonctions Quasi Analytique (Gauthier Villars, Paris, 1926), p. 80. The theorem was applied to the phonon‐polaron problem by F. R. Halpern, Phys. Rev. 111, 1 (1958).en_US
dc.identifier.citedreferenceE. R. Hassé, Proc. Cambridge Phil. Soc. 26, 542 (1930); J. C. Slater and J. G. Eirkwood, Phys. Rev. 37, 682 (1931).en_US
dc.identifier.citedreferenceJ. K. L. MacDonald, Phys. Rev. 43, 830 (1933).en_US
dc.identifier.citedreferenceD. Bergmann and Y. Frishman, J. Math. Phys. 6, 1855 (1965).en_US
dc.identifier.citedreferenceSemimoments are denoted by hk(q′)hk(q′) in Refs. 5 and 6.en_US
dc.identifier.citedreferenceJ. H. Bartlett, Phys. Rev. 51, 661 (1937).en_US
dc.identifier.citedreferenceA. A. Frost, J. Chem. Phys. 10, 240 (1942); A. A. Frost, R. E. Kellogg, and E. C. Curtis, Rev. Mod. Phys. 32, 313 (1960); and subsequent publications of Frost and co‐workers.en_US
dc.identifier.citedreferenceD. H. Weinstein, Proc. Nat. Acad. Sci. U.S. 20, 529 (1934); L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw‐Hill Book Co., New York, 1935), p. 189.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.