Show simple item record

Wavelength modulation spectroscopy of single quantum dots

dc.contributor.authorStievater, T. H.en_US
dc.contributor.authorLi, Xiaoqinen_US
dc.contributor.authorGuest, J. R.en_US
dc.contributor.authorSteel, Duncan G.en_US
dc.contributor.authorGammon, Danielen_US
dc.contributor.authorKatzer, D. S.en_US
dc.contributor.authorPark, D.en_US
dc.date.accessioned2010-05-06T21:31:24Z
dc.date.available2010-05-06T21:31:24Z
dc.date.issued2002-03-18en_US
dc.identifier.citationStievater, T. H.; Li, Xiaoqin; Guest, J. R.; Steel, D. G.; Gammon, D.; Katzer, D. S.; Park, D. (2002). "Wavelength modulation spectroscopy of single quantum dots." Applied Physics Letters 80(11): 1876-1878. <http://hdl.handle.net/2027.42/70029>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70029
dc.description.abstractWe demonstrate that external cavity diode lasers with large mode-hop-free tuning ranges (up to 80 GHz) together with wavelength modulation spectroscopy can be used to study excitonic transitions in semiconductor nanostructures. Such transitions are characterized by homogeneous linewidths typically on the order of a few GHz. Wavelength modulation spectroscopy offers a high signal-to-noise method for the determination of resonance line shapes. We have used this technique to accurately measure dipole moments and dephasing rates of single semiconductor quantum dot eigenstates. These measurements are important for the use of quantum dots in semiconductor cavities and quantum logic gates, and for an improved understanding of the physics of exciton confinement. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent44648 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleWavelength modulation spectroscopy of single quantum dotsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHarrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherNaval Research Laboratory, Washington, DC 20375en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70029/2/APPLAB-80-11-1876-1.pdf
dc.identifier.doi10.1063/1.1461071en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceE. G. Moses and C. L. Tang, Opt. Lett. OPLEDP1, 115 (1977).en_US
dc.identifier.citedreferenceG. C. Bjorklund, Opt. Lett. OPLEDP5, 15 (1980).en_US
dc.identifier.citedreferenceD. S. Bomse, A. C. Stanton, and J. A. Silver, Appl. Opt. APOPAI31, 718 (1992).en_US
dc.identifier.citedreferenceJ. M. Supplee, E. M. Whittaker, and W. Lenth, Appl. Opt. APOPAI33, 6294 (1994).en_US
dc.identifier.citedreferenceQ. V. Nguyen and R. W. Dibble, Opt. Lett. OPLEDP19, 2134 (1994).en_US
dc.identifier.citedreferenceL. Xiao, C. Li, Q. Li, S. Jia, and G. Zhou, Appl. Opt. APOPAI39, 1049 (2000).en_US
dc.identifier.citedreferenceD. B. Oh and D. C. Hovde, Appl. Opt. APOPAI34, 7002 (1995).en_US
dc.identifier.citedreferenceG. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. RMPHAT71, 1591 (1999).en_US
dc.identifier.citedreferenceL. C. Andreani, G. Panzarini, and J. M. Gérard, Phys. Rev. B PRBMDO60, 13276 (1999).en_US
dc.identifier.citedreferenceE. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett. PRLTAO85, 5647 (2000).en_US
dc.identifier.citedreferenceP. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. PRLTAO87, 067401 (2001).en_US
dc.identifier.citedreferenceM. Cardona, Solid State Physics (Academic, New York, 1969), Suppl. 11.en_US
dc.identifier.citedreferenceD. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. APPLAB67, 2391 (1995).en_US
dc.identifier.citedreferenceD. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science SCIEAS273, 87 (1996).en_US
dc.identifier.citedreferenceR. Arndt, J. Appl. Phys. JAPIAU36, 2522 (1965).en_US
dc.identifier.citedreferenceN. H. Bonadeo, G. Chen, D. Gammon, D. S. Katzer, D. Park, and D. G. Steel, Phys. Rev. Lett. PRLTAO81, 2759 (1998).en_US
dc.identifier.citedreferenceD. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. PRLTAO76, 3005 (1996).en_US
dc.identifier.citedreferenceJ. R. Guest, T. H. Stievater, X. Li, J. Cheng, D. G. Steel, D. S. Katzer, D. Park, D. Gammon, C. Ell, A. Thränhardt, H. M. Gibbs, and G. Khitrova (unpublished).en_US
dc.identifier.citedreferenceT. Takagahara (private communication).en_US
dc.identifier.citedreferenceN. H. Bonadeo, A. S. Lenihan, G. Chen, J. R. Guest, D. Gammon, D. S. Katzer, D. Park, and D. G. Steel, Appl. Phys. Lett. APPLAB75, 2933 (1999).en_US
dc.identifier.citedreferenceT. H. Stievater, X. Li, D. G. Steel, D. S. Katzer, D. Park, D. Gammon, L. J. Sham, and C. Piermarocchi, Phys. Rev. Lett. PRLTAO87, 133603 (2001).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.