Show simple item record

Fluorescence depolarization by anisotropic rotational diffusion of a luminophore and its carrier molecule

dc.contributor.authorBurghardt, Thomas P.en_US
dc.date.accessioned2010-05-06T21:34:29Z
dc.date.available2010-05-06T21:34:29Z
dc.date.issued1983-05-15en_US
dc.identifier.citationBurghardt, Thomas P. (1983). "Fluorescence depolarization by anisotropic rotational diffusion of a luminophore and its carrier molecule." The Journal of Chemical Physics 78(10): 5913-5919. <http://hdl.handle.net/2027.42/70062>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70062
dc.description.abstractThe analytical expression for the polarization anisotropy is derived for a luminophore undergoing rotational diffusion about a single axis while attached to a nonluminescing, rotationally diffusing, symmetrical carrier molecule. In contrast to previous related calculations, the rotation axis of the luminophore is assumed to have an arbitrary orientation relative to the carrier. Additionally, the polarization anisotropy is measured for bovine serum albumin (BSA) labeled with dansyl, NBD, rhodamine, or eosin that is: (a) surface adsorbed to a glass/buffer interface, using a variation of the technique of total internal reflection fluorescence spectroscopy (TIRFS), or (b) bulk dissolved, using conventional transmitted illumination fluorescence spectroscopy. With this theory, using previously published values for the rotational diffusion constants of BSA and the fluorescence lifetimes of the fluorophores, the rotational diffusion constant of the covalently bound probes is estimated from the measured anisotropy values. The results indicate a wide variability in the rotational diffusion constant of the probes (from ∼107 s−1 for dansyl to ∼109 s−1 for eosin) attached to both the surface adsorbed and bulk dissolved forms of BSA. Contrasting the rotational diffusion constant for each probe for surface adsorbed BSA vs bulk dissolved BSA indicates surface adsorption of the BSA molecule inhibits the rotational motion of the probe. These results have important implications in the application of other fluorescence techniques, such as singlet–singlet energy transfer, where the rotational mobility of the probe is important.en_US
dc.format.extent3102 bytes
dc.format.extent479909 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleFluorescence depolarization by anisotropic rotational diffusion of a luminophore and its carrier moleculeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70062/2/JCPSA6-78-10-5913-1.pdf
dc.identifier.doi10.1063/1.444596en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. Rigler and M. Ehrenberg, Q. Rev. Biophys. 6, 139 (1973).en_US
dc.identifier.citedreferenceD. C. Yang, W. E. Gall, and G. M. Edelman, J. Biol. Chem. 249 (21), 7018 (1974).en_US
dc.identifier.citedreferenceJ. Yguerabide, H. F. Epstein, and L. Stryer, J. Mol. Biol. 51, 573 (1970).en_US
dc.identifier.citedreferenceJ. R. Lakowicz and G. Weber, Biophys. J. 32, 591 (1980).en_US
dc.identifier.citedreferenceW. F. Harrington, P. Johnson, and R. H. Ottewill, Biochem. J. 62, 562 (1956).en_US
dc.identifier.citedreferenceP. Wahl and G. Weber, J. Mol. Biol. 30, 371 (1967).en_US
dc.identifier.citedreferenceG. Lipari and A. Szabo, Biophys. J. 30, 489 (1980).en_US
dc.identifier.citedreferenceI. Munro, I. Pecht, and L. Stryer, Proc. Natl. Acad. Sci. 76, 56 (1979).en_US
dc.identifier.citedreferenceF. Jahnig, Proc. Natl. Acad. Sci. 76, 6361 (1979).en_US
dc.identifier.citedreferenceK. Kinosita, Jr., S. Kawato, and A. Ikegami, Biophys. J. 20, 289 (1977).en_US
dc.identifier.citedreferenceM. Shinitzky and P. Henkart, Int. Rev. Cytol. 60, 121 (1979).en_US
dc.identifier.citedreferenceR. J. Cherry, FEBS Lett. 55, 1 (1975).en_US
dc.identifier.citedreferenceR. H. Austin, S. S. Chan, and T. M. Jovin, Proc. Natl. Acad. Sci. 76 (11), 5650 (1979).en_US
dc.identifier.citedreferenceD. Axelrod, Biophys. J. 26, 557 (1979).en_US
dc.identifier.citedreferenceM. Shinitzky and Y. Barenholz, Biochim. Biophys. Acta 515, 367 (1978).en_US
dc.identifier.citedreferenceY. Gottlieb and P. Wahl, J. Chim. Phys. 60, 849 (1963).en_US
dc.identifier.citedreferenceJ. M. Schurr, Chem. Phys. 65, 417 (1982).en_US
dc.identifier.citedreferenceS. Krause and C. T. O’Konski, J. Am. Chem. Soc. 81, 5082 (1959).en_US
dc.identifier.citedreferenceT. P. Burghardt and D. Axelrod, Biochemistry 22, 979 (1983).en_US
dc.identifier.citedreferenceL. D. Favro, Phys. Rev. 119, 53 (1960).en_US
dc.identifier.citedreferenceL. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory (Pergamon, New York, 1975).en_US
dc.identifier.citedreferenceA. S. Davydov, Quantum Mechanics (NEO, Ann Arbor, Michigan, 1966).en_US
dc.identifier.citedreferenceN. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1966).en_US
dc.identifier.citedreferenceT. P. Burghardt and D. Axelrod, Biophys. J. 33, 455 (1981).en_US
dc.identifier.citedreferenceN. L. Thompson, Ph.D. thesis, University of Michigan, 1982.en_US
dc.identifier.citedreferenceM. D. Barkley, A. A. Kowalczyk, and L. Brand, J. Chem. Phys. 75 (7), 3581 (1981).en_US
dc.identifier.citedreferenceR. E. Dale and J. Eisinger, Biopolymers 13, 1573 (1974).en_US
dc.identifier.citedreferenceCRC Standard Mathematical Tables, 16th ed., edited by S. M. Selby (Chemical Rubber, Clevland, Ohio, 1968).en_US
dc.identifier.citedreferenceR. Haugland (private communication).en_US
dc.identifier.citedreferenceH. E. Lessing and A. Von Jena, Chem. Phys. 41, 395 (1979).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.