Show simple item record

Dipole Moments of Dimethylsiloxane Chains

dc.contributor.authorMark, J. E.en_US
dc.date.accessioned2010-05-06T21:35:07Z
dc.date.available2010-05-06T21:35:07Z
dc.date.issued1968-08-01en_US
dc.identifier.citationMark, J. E. (1968). "Dipole Moments of Dimethylsiloxane Chains." The Journal of Chemical Physics 49(3): 1398-1402. <http://hdl.handle.net/2027.42/70069>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70069
dc.description.abstractA rotational isometric‐state model with neighbor dependence is used to calculate mean‐square dipole moments and their temperature coefficients for dimethylsiloxane chains (CH3)3Si[OSi(CH3)2]xOSi(CH3)3 over a wide range of molecular weight. Chain conformational energies required in the calculations are obtained from a previous analysis of the random‐coil dimensions of dimethylsiloxane chains in the limit of large xx. Calculated dipole moments are in very good agreement with recently reported experimental results for oligomers corresponding to x  =  1,2,3,and5,x=1,2,3,and5, at 25°, 40°, and 60°C. A simple physical picture for the predicted values of the dipole moments and their temperature coefficients is provided. As is the case in the interpretation of the dimensions of these chain molecules, the features of paramount importance are the inequality of the bond angles about Si and O atoms and the lower energy of trans, relative to gauche, states about Si☒O and O☒Si skeletal bonds.en_US
dc.format.extent3102 bytes
dc.format.extent366291 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDipole Moments of Dimethylsiloxane Chainsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70069/2/JCPSA6-49-3-1398-1.pdf
dc.identifier.doi10.1063/1.1670238en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Mizushima, Structure of Molecules and Internal Rotation (Academic Press Inc., New York, 1954).en_US
dc.identifier.citedreferenceM. V. Volkenstein, Configurational Statistics of Polymeric Chains (Interscience Publishers, Inc., New York, 1963) (English translation).en_US
dc.identifier.citedreferenceS. Lifson, J. Chem. Phys. 30, 964 (1959).en_US
dc.identifier.citedreferenceT. M. Birshtein and O. B. Ptitsyn, Zh. Tekh. Fiz. 29, 1048 (1959) [Sov. Phys.‐Tech. Fiz. 4, 954 (1960)]; T. M. Birshtein, Vysokomolekul. Soedin. 1, 798, 1086 (1959); O. B. Ptitsyn, Usp. Fiz. Nauk. 69, 371 (1959) [Sov. Phys.‐Usp. 2, 797 (1960)].en_US
dc.identifier.citedreferenceK. Nagai, J. Chem. Phys. 31, 1169 (1959).en_US
dc.identifier.citedreferenceC. A. J. Hoeve, J. Chem. Phys. 32, 888 (1960).en_US
dc.identifier.citedreferenceP. J. Flory, Proc. Natl. Acad. Sci. (U.S.) 51, 1060 (1964).en_US
dc.identifier.citedreferenceP. J. Flory and R. L. Jernigan, J. Chem. Phys. 42, 3509 (1965).en_US
dc.identifier.citedreferenceReferences 10–20 are to representative studies from what is now a very extensive body of literature.en_US
dc.identifier.citedreferenceD. A. Brant and P. J. Flory, J. Am. Chem. Soc. 87, 2791 (1965).en_US
dc.identifier.citedreferenceJ. E. Mark, J. Am. Chem. Soc. 89, 6829 (1967).en_US
dc.identifier.citedreferenceW. J. Leonard, Jr., R. L. Jernigan, and P. J. Flory, J. Chem. Phys. 43, 2256 (1965).en_US
dc.identifier.citedreferenceJ. E. Mark and P. J. Flory, J. Am. Chem. Soc. 88, 3702 (1966).en_US
dc.identifier.citedreferenceT. W. Bates and W. H. Stockmayer, Macromol. 1, 12 (1968).en_US
dc.identifier.citedreferenceW. G. Miller and P. J. Flory, J. Mol. Biol. 15, 298 (1966).en_US
dc.identifier.citedreferenceP. J. Flory and J. A. Semlyen, J. Am. Chem. Soc. 88, 3209 (1966).en_US
dc.identifier.citedreferenceP. J. Flory, J. Am. Chem. Soc. 89, 1798 (1967).en_US
dc.identifier.citedreferenceK. Nagai and T. Ishikawa, J. Chem. Phys. 43, 4508 (1965).en_US
dc.identifier.citedreferenceK. Nagai, J. Chem. Phys. 40, 2818 (1964).en_US
dc.identifier.citedreferenceP. J. Flory, R. L. Jernigan, and A. E. Tonelli, J. Chem. Phys. 48, 3822 (1968).en_US
dc.identifier.citedreferenceJ. E. Mark, J. Am. Chem. Soc. 88, 3708 (1966).en_US
dc.identifier.citedreferenceK. Bak, G. Elefante, and J. E. Mark, J. Phys. Chem. 71, 4007 (1967).en_US
dc.identifier.citedreferenceP. J. Flory, V. Crescenzi, and J. E. Mark, J. Am. Chem. Soc. 86, 146 (1964).en_US
dc.identifier.citedreferenceS. Dasgupta and C. P. Smyth, J. Chem. Phys. 47, 2911 (1967).en_US
dc.identifier.citedreferenceP. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, N.Y., 1953).en_US
dc.identifier.citedreferenceV. Crescenzi and P. J. Flory, J. Am. Chem. Soc. 86, 141 (1964).en_US
dc.identifier.citedreferenceJ. E. Mark and P. J. Flory, J. Am. Chem. Soc. 86, 138 (1964).en_US
dc.identifier.citedreferenceH. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).en_US
dc.identifier.citedreferenceG. F. Newell and E. Montroll, Rev. Mod. Phys. 25, 353 (1953).en_US
dc.identifier.citedreferenceH. Eyring, Phys. Rev. 39, 746 (1932).en_US
dc.identifier.citedreferenceP. J. Flory, Statistical Mechanics of Chain Molecules (Interscience Publishers, Inc., New York, 1968).en_US
dc.identifier.citedreferenceJ. Marchal and H. Benoit, J. Chim. Phys. 52, 818 (1955); J. Polymer Sci. 23, 223 (1957).en_US
dc.identifier.citedreferenceJ. Marchal and C. Lapp, J. Polymer Sci. 27, 571 (1958).en_US
dc.identifier.citedreferenceS. Dasgupta, S. K. Garg, and C. P. Smyth, J. Am. Chem. Soc. 89, 2243 (1967).en_US
dc.identifier.citedreferenceDasgupta and Smyth assume a Si‐O‐Si bond angle of 150° and obtain ∣m∣  =  0.73 D.∣m∣=0.73D. The expression of experimental and theoretical results as the ratio ⟨μ2⟩0/nm2⟨μ2⟩0∕nm2 minimizes the effect of this difference.en_US
dc.identifier.citedreferenceT. M. Birshtein, O. B. Ptitsyn, and E. A. Sokolova, Vysoko‐molekul. Soedin. 1, 852 (1959).en_US
dc.identifier.citedreferenceSuch effects are most pronounced for polar chain molecules, suggesting that they are due at least in part to the dependence of the Coulombic contribution to the conformational energy on the dielectric constant of the solvent medium.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.