Solution of the Schrödinger equation for a particle in an equilateral triangle
dc.contributor.author | Li, Wai‐Kee | en_US |
dc.contributor.author | Blinder, S. M. | en_US |
dc.date.accessioned | 2010-05-06T21:35:46Z | |
dc.date.available | 2010-05-06T21:35:46Z | |
dc.date.issued | 1985-11 | en_US |
dc.identifier.citation | Li, Wai‐Kee; Blinder, S. M. (1985). "Solution of the Schrödinger equation for a particle in an equilateral triangle." Journal of Mathematical Physics 26(11): 2784-2786. <http://hdl.handle.net/2027.42/70076> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/70076 | |
dc.description.abstract | The complete solution for the quantum‐mechanical problem of a particle in an equilateral triangle is derived. By use of projection operators, eigenfunctions belonging explicitly to each of the irreducible representations of the symmetry group C3V are constructed. The most natural definition of the quantum numbers p and q includes not only integers but also nonintegers of the class (1)/(3) and (2)/(3) modulo 1. Some relevant features relating to symmetry and degeneracy are also discussed. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 282989 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/octet-stream | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Solution of the Schrödinger equation for a particle in an equilateral triangle | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationother | Department of Chemistry, Chinese University of Hong Kong, Shatin, N. T., Hong Kong | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/70076/2/JMAPAQ-26-11-2784-1.pdf | |
dc.identifier.doi | 10.1063/1.526701 | en_US |
dc.identifier.source | Journal of Mathematical Physics | en_US |
dc.identifier.citedreference | J. Mathews and R. L. Walker, Mathematical Methods for Physicists (Benjamin, New York, 1970), 2nd ed. pp. 237 ff. | en_US |
dc.identifier.citedreference | H. R. Krishnamurthy, H. S. Mani, and H. C. Venna, J. Phys. A 15, 2131 (1982). See also J. W. Turner, J. Phys. A 17, 2791 (1984). | en_US |
dc.identifier.citedreference | G. B. Shaw, J. Phys. A 7, 1357 (1974). | en_US |
dc.identifier.citedreference | M. G. Lamé, Leçqns sur la Théorie Mathématique de l’ Elasticité des Corps Solides (Bachelier, Paris, 1852), §57. | en_US |
dc.identifier.citedreference | W.‐K. Li, J. Chem. Educ. 61, 1034 (1984). | en_US |
dc.identifier.citedreference | J. W. Turner, J. Phys. A 17, 2791 (1984). | en_US |
dc.identifier.citedreference | W.‐K. Li, Am. J. Phys. 50, 666 (1982). | en_US |
dc.identifier.citedreference | See, for example, E. D. Bolker, Elementary Number Theory (Benjamin, New York, 1970), p. 121. | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.