Show simple item record

Centroid-based methods for calculating quantum reaction rate constants: Centroid sampling versus centroid dynamics

dc.contributor.authorShi, Qiangen_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2010-05-06T21:36:03Z
dc.date.available2010-05-06T21:36:03Z
dc.date.issued2002-02-22en_US
dc.identifier.citationShi, Qiang; Geva, Eitan (2002). "Centroid-based methods for calculating quantum reaction rate constants: Centroid sampling versus centroid dynamics." The Journal of Chemical Physics 116(8): 3223-3233. <http://hdl.handle.net/2027.42/70079>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70079
dc.description.abstractA new method was recently introduced for calculating quantum mechanical rate constants from centroid molecular dynamics (CMD) simulations [E. Geva, Q. Shi, and G. A. Voth, J. Chem. Phys. 115, 9209 (2001)]. This new method is based on a formulation of the reaction rate constant in terms of the position-flux correlation function, which can be approximated in a well defined way via CMD. In the present paper, we consider two different approximated versions of this new method, which enhance its computational feasibility. The first approximation is based on propagating initial states which are sampled from the initial centroid distribution, on the classical potential surface. The second approximation is equivalent to a classical-like calculation of the reaction rate constant on the centroid potential, and has two distinct advantages: (1) it bypasses the problem of inefficient sampling which limits the applicability of the full CMD method at very low temperatures; (2) it has a well defined TST limit which is directly related to path-integral quantum transition state theory (PI-QTST). The approximations are tested on a model consisting of a symmetric double-well bilinearly coupled to a harmonic bath. Both approximations are quite successful in reproducing the results obtained via full CMD, and the second approximation is shown to provide a good estimate to the exact high-friction rate constants at very low temperatures. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent157204 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCentroid-based methods for calculating quantum reaction rate constants: Centroid sampling versus centroid dynamicsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70079/2/JCPSA6-116-8-3223-1.pdf
dc.identifier.doi10.1063/1.1445120en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceP. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. RMPHAT62, 251 (1990).en_US
dc.identifier.citedreferenceW. H. Miller, J. Chem. Phys. JCPSA661, 1823 (1974).en_US
dc.identifier.citedreferenceM. J. Gillan, Phys. Rev. Lett. PRLTAO58, 563 (1987).en_US
dc.identifier.citedreferenceM. J. Gillan, J. Phys. C JPSOAW20, 3621 (1987).en_US
dc.identifier.citedreferenceG. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. JCPSA691, 7749 (1989).en_US
dc.identifier.citedreferenceG. A. Voth, Chem. Phys. Lett. CHPLBC170, 289 (1990).en_US
dc.identifier.citedreferenceR. P. McRae, G. K. Schenter, B. C. Garrett, G. R. Haynes, G. A. Voth, and G. C. Schatz, J. Chem. Phys. JCPSA697, 7392 (1992).en_US
dc.identifier.citedreferenceG. A. Voth, J. Phys. Chem. JPCHAX97, 8365 (1993).en_US
dc.identifier.citedreferenceG. A. Voth, Adv. Chem. Phys. ADCPAA93, 135 (1996).en_US
dc.identifier.citedreferenceN. Fisher and H. C. Andersen, J. Phys. Chem. JPCHAX100, 1137 (1996).en_US
dc.identifier.citedreferenceE. Pollak and J. Liao, J. Chem. Phys. JCPSA6108, 2733 (1998).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6112, 8747 (2000).en_US
dc.identifier.citedreferenceJ. L. Liao and E. Pollak, Chem. Phys. CMPHC2268, 295 (2001).en_US
dc.identifier.citedreferenceR. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965).en_US
dc.identifier.citedreferenceR. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972).en_US
dc.identifier.citedreferenceB. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. ARPLAP37, 401 (1986).en_US
dc.identifier.citedreferenceD. M. Ceperley, Rev. Mod. Phys. RMPHAT67, 279 (1995).en_US
dc.identifier.citedreferenceP. Pechukas, Dynamics of Molecular Collisions, Part 2 (Plenum, New York, 1976), p. 269.en_US
dc.identifier.citedreferenceM. Messina, G. K. Schenter, and B. C. Garrett, J. Chem. Phys. JCPSA698, 8525 (1993).en_US
dc.identifier.citedreferenceG. K. Schenter, M. Messina, and B. C. Garrett, J. Chem. Phys. JCPSA699, 1674 (1993).en_US
dc.identifier.citedreferenceT. Yamamoto, J. Chem. Phys. JCPSA633, 281 (1960).en_US
dc.identifier.citedreferenceW. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. JCPSA679, 4889 (1983).en_US
dc.identifier.citedreferenceN. Makri and K. Thompson, Chem. Phys. Lett. CHPLBC291, 101 (1998).en_US
dc.identifier.citedreferenceW. H. Miller, Faraday Discuss. FDISE6110, 1 (1998).en_US
dc.identifier.citedreferenceH. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. JCPSA6108, 9726 (1998).en_US
dc.identifier.citedreferenceJ. S. Shao and N. Makri, J. Phys. Chem. A JPCAFH103, 7753 (1999).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, Phys. Rev. E PLEEE859, R4729 (1999).en_US
dc.identifier.citedreferenceH. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. JCPSA6112, 47 (2000).en_US
dc.identifier.citedreferenceK. Yamashita and W. H. Miller, J. Chem. Phys. JCPSA682, 5475 (1985).en_US
dc.identifier.citedreferenceE. Gallicchio and B. J. Berne, J. Chem. Phys. JCPSA6105, 7064 (1996).en_US
dc.identifier.citedreferenceE. Gallicchio, S. A. Egorov, and B. J. Berne, J. Chem. Phys. JCPSA6109, 7745 (1998).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Gallicchio, and B. J. Berne, J. Chem. Phys. JCPSA6107, 9312 (1997).en_US
dc.identifier.citedreferenceG. Krilov and B. J. Berne, J. Chem. Phys. JCPSA6111, 9147 (1999).en_US
dc.identifier.citedreferenceE. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phys. JCPSA6112, 2605 (2000).en_US
dc.identifier.citedreferenceE. Sim, G. Krilov, and B. Berne, J. Phys. Chem. A JPCAFH105, 2824 (2001).en_US
dc.identifier.citedreferenceE. Geva, Q. Shi, and G. A. Voth, J. Chem. Phys. JCPSA6115, 9209 (2001).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5093 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5106 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6157 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6168 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6184 (1994).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2357 (1999).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2371 (1999).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, J. Chem. Phys. JCPSA6101, 7500 (1994).en_US
dc.identifier.citedreferenceA. Calhoun, M. Pavese, and G. A. Voth, Chem. Phys. Lett. CHPLBC262, 415 (1996).en_US
dc.identifier.citedreferenceU. W. Schmitt and G. A. Voth, J. Chem. Phys. JCPSA6111, 9361 (1999).en_US
dc.identifier.citedreferenceS. Jang, Y. Pak, and G. A. Voth, J. Phys. Chem. A JPCAFH103, 10289 (1999).en_US
dc.identifier.citedreferenceM. Pavese and G. A. Voth, Chem. Phys. Lett. CHPLBC249, 231 (1996).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6106, 1154 (1997).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6109, 610 (1998).en_US
dc.identifier.citedreferenceK. Kinugawa, Chem. Phys. Lett. CHPLBC292, 454 (1998).en_US
dc.identifier.citedreferenceM. Pavese, D. R. Berard, and G. A. Voth, Chem. Phys. Lett. CHPLBC300, 93 (1999).en_US
dc.identifier.citedreferenceS. Miura, S. Okazaki, and K. Kinugawa, J. Chem. Phys. JCPSA6110, 4523 (1999).en_US
dc.identifier.citedreferenceF. J. Bermejo et al., Phys. Rev. Lett. PRLTAO84, 5359 (2000).en_US
dc.identifier.citedreferenceD. Chandler, J. Chem. Phys. JCPSA668, 2959 (1978).en_US
dc.identifier.citedreferenceJ. A. Montgomrey, Jr., D. Chandler, and B. J. Berne, J. Chem. Phys. JCPSA670, 4056 (1979).en_US
dc.identifier.citedreferenceJ. S. Shao, J. L. Liao, and E. Pollak, J. Chem. Phys. JCPSA6108, 9711 (1998).en_US
dc.identifier.citedreferenceM. Ovchinnikov, V. A. Apkarian, and G. A. Voth, J. Chem. Phys. JCPSA6184, 7130 (2001).en_US
dc.identifier.citedreferenceY. Zheng and E. Pollak, J. Chem. Phys. JCPSA6114, 9741 (2001).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.