Show simple item record

Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K

dc.contributor.authorWestrum, Edgar F. Jr.en_US
dc.contributor.authorChou, C.en_US
dc.contributor.authorMachol, Robert Engelen_US
dc.contributor.authorGrønvold, Fredriken_US
dc.date.accessioned2010-05-06T21:37:04Z
dc.date.available2010-05-06T21:37:04Z
dc.date.issued1958-03en_US
dc.identifier.citationWestrum, E. F.; Chou, C.; Machol, R. E.; Grønvold, F. (1958). "Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K." The Journal of Chemical Physics 28(3): 497-503. <http://hdl.handle.net/2027.42/70090>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70090
dc.description.abstractHeat capacities of the nickel tellurides were measured at compositions NiTe1.1 and NiTe2.0 (near limits of homogeneity of the δ phase) and at one intermediate composition, NiTe1.5, from 5 to 350°K. Heat capacity values and entropy and enthalpy increments are tabulated. No evidence of order‐disorder transitions, or thermal anomalies, or of contributions to the thermal properties from the anisotropy or phonon scattering by the holes in the structure on approaching the composition NiTe2 was observed. Although simple additivity of the heat capacities of the constituent elements failed to represent that of the solution compositions adequately, a Kopp‐Neumann treatment in terms of the limiting compositions of the δ phase gives good agreement with the experimental heat capacity and entropy of NiTe1.5 and hence is useful in interpolating to other intermediate compositions.en_US
dc.format.extent3102 bytes
dc.format.extent479086 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°Ken_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherChemical Institute A, University of Oslo, Blindern, Norwayen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70090/2/JCPSA6-28-3-497-1.pdf
dc.identifier.doi10.1063/1.1744164en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Tengnér, Z. Anorg. u. Allgem. Chem. 239, 126 (1938).en_US
dc.identifier.citedreferenceI. Oftedal, Z. Physik. Chem. 128, 135 (1927).en_US
dc.identifier.citedreferenceJ. Barstad and F. Grønvold, Acta. Chem. Scand. (to be published).en_US
dc.identifier.citedreferenceW. Klemm and N. Fratini, Z. Anorg. u. Allgem. Chem. 251, 222 (1943).en_US
dc.identifier.citedreferenceF. M. Gal’perin and T. M. Perekalina, Doklady Akad. Nauk SSSR 69, 19 (1949).en_US
dc.identifier.citedreferenceV. P. Zhuze and A. R. Regel, Zhur. Tekh. Fiz. 25, 978 (1955).en_US
dc.identifier.citedreferenceE. Uchida and H. Kondoh, J. Phys. Soc. Japan 11, 21 (1956).en_US
dc.identifier.citedreferenceA. Schneider and K. H. Imhagen, Naturwiss. 44, 324 (1957).en_US
dc.identifier.citedreferenceW. Klemm, Naturwiss. 37, 150 (1950); 37, 172 (1950).en_US
dc.identifier.citedreferenceP. Ehrlich, Z. Anorg. Chem. 260, 19 (1949).en_US
dc.identifier.citedreferenceH. Haraldsen, Z. angew. Chem. (to be published).en_US
dc.identifier.citedreferenceE. W. Elcock, Proc. Roy. Soc. (London) A227, 102 (1954).en_US
dc.identifier.citedreferenceF. K. Lotgering, Z. Physik. Chem. N.F.4, 238 (1955); Philips Research Repts. 11, 190 (1956).en_US
dc.identifier.citedreferenceC. Fabre, Compt. Rend. 105, 277 (1887).en_US
dc.identifier.citedreferenceW. A. Tilden, Trans. Roy. Soc. A203, 139 (1904).en_US
dc.identifier.citedreferenceE. F. Westrum, Jr., and A. F. Beale, Jr., J. Am. Chem. Soc. (to be published).en_US
dc.identifier.citedreferenceSee, for example, R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, New York, 1939), p. 568.en_US
dc.identifier.citedreferenceW. DeSorbo, Acta Met. 3, 227 (1955).en_US
dc.identifier.citedreferenceCoffer, Craig, Krier, and Wallace, J. Am. Chem. Soc. 76, 241 (1954).en_US
dc.identifier.citedreferenceC. T. Anderson, J. Am. Chem. Soc. 59, 1036 (1937).en_US
dc.identifier.citedreferenceC. M. Slansky and L. V. Coulter, J. Am. Chem. Soc. 61, 564 (1939).en_US
dc.identifier.citedreferenceR. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 74, 3157 (1952).en_US
dc.identifier.citedreferenceJ. A. Rayne and W. R. G. Kemp, Phil. Mag. 1(8), 918 (1956).en_US
dc.identifier.citedreferenceE. C. Stoner, Phil. Mag. 22, 81 (1936).en_US
dc.identifier.citedreferenceDworkin, Sasmore, and Van Artsdalen, J. Am. Chem. Soc. 77, 1304 (1955).en_US
dc.identifier.citedreferenceW. Nernst and F. Lindemann, Z. Electrochem. 17, 817 (1911).en_US
dc.identifier.citedreference“Selected values of chemical thermodynamic properties,” Natl. Bur. Standards Circular No. 500, Washington, 1952.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.