Show simple item record

Energy Expectation Values and the Integral Hellmann–Feynman Theorem: H2+ Molecule

dc.contributor.authorRothstein, Stuart M.en_US
dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2010-05-06T21:37:38Z
dc.date.available2010-05-06T21:37:38Z
dc.date.issued1968-08-01en_US
dc.identifier.citationRothstein, Stuart M.; Blinder, S. M. (1968). "Energy Expectation Values and the Integral Hellmann–Feynman Theorem: H2+ Molecule." The Journal of Chemical Physics 49(3): 1284-1287. <http://hdl.handle.net/2027.42/70096>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70096
dc.description.abstractIt is by now well known that the integral Hellmann–Feynman (IHF) theorem has little quantitative utility for chemically interesting problems, although the formalism potentially affords a ready physical interpretation of changes in molecular conformation. In this paper, the IHF theorem is applied to variational and simple LCAO wavefunctions for the H2+ ground state, which range in quality from crude to essentially exact. The IHF results improve quite dramatically with the quality of the wavefunctions. This suggests that errors in the IHF formula may be of the same order as those in the wavefunction. (In contrast, errors in variationally determined energies are of second order.) Our results suggest a convenient test which can be applied to any revised IHF formalism developed in the future.en_US
dc.format.extent3102 bytes
dc.format.extent285078 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnergy Expectation Values and the Integral Hellmann–Feynman Theorem: H2+ Moleculeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70096/2/JCPSA6-49-3-1284-1.pdf
dc.identifier.doi10.1063/1.1670221en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. G. Parr, J. Chem. Phys. 40, 3726 (1964).en_US
dc.identifier.citedreferenceR. E. Wyatt and R. G. Parr, J. Chem. Phys. 44, 1529 (1966).en_US
dc.identifier.citedreferenceW. H. Fink and L. C. Allen, J. Chem. Phys. 46, 3270 (1967).en_US
dc.identifier.citedreferenceM. P. Melrose and R. G. Parr, Theoret. Chim. Acta 8, 150 (1967).en_US
dc.identifier.citedreferenceS. M. Rothstein and S. M. Blinder, Theoret. Chim. Acta 8, 427 (1967), and Refs. 2–7 therein.en_US
dc.identifier.citedreferenceS. T. Epstein, A. C. Hurley, R. E. Wyatt, and R. G. Parr, J. Chem. Phys. 47, 1275 (1967).en_US
dc.identifier.citedreferenceS. Kim, T. Y. Chang, and J. O. Hirschfelder, J. Chem. Phys. 43, 1092 (1965).en_US
dc.identifier.citedreferenceΔTΔT contains the volume integral ∫ dτ(ψR∇2ψR′−ψR′∇2ψR),∫dτ(ψR∇2ψR′−ψR′∇2ψR), By Green’s theorem, this can be transformed to a surface integral ∫ (ψR∇ψR′⋅dσ−ψR′∇ψR⋅dσ).∫(ψR∇ψR′⋅dσ−ψR′∇ψR⋅dσ). As the integration is extended over all space, there do indeed arise nonvanishing contributions from surface elements enclosing the nuclei, owing to the cusps in ψ, hence, discontinuities in ∇ψ.∇ψ. However, since ψ and ∇ψ.∇ψ. are both finite at the nuclei, these contributions, and hence ΔT,ΔT, approach zero in the limit as the surface elements about the nuclei are collapsed to points. See also J. O. Hirschfelder and G. V. Nazaroff, J. Chem. Phys. 34, 1666 (1961).en_US
dc.identifier.citedreferenceS.M.R. acknowledges a conversation with Prof. R. M. Pitzer on this and a closely related subject.en_US
dc.identifier.citedreferenceE. A. Magnusson and C. Zauli, Proc. Phys. Soc. (London) 78, 53 (1961).en_US
dc.identifier.citedreferenceD. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. Roy. Soc. (London) A246, 215 (1953).en_US
dc.identifier.citedreferenceJ. I. Musher, J. Chem. Phys. 43, 2145 (1965).en_US
dc.identifier.citedreferenceJ. P. Lowe and A. Mazziotti, J. Chem. Phys. 48, 877 (1968).en_US
dc.identifier.citedreferenceFurther analysis to be published (S.M.R.).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.