Show simple item record

Laser deposition of diamondlike carbon films at high intensities

dc.contributor.authorQian, F.en_US
dc.contributor.authorSingh, R. K.en_US
dc.contributor.authorDutta, S. K.en_US
dc.contributor.authorPronko, P. P.en_US
dc.date.accessioned2010-05-06T21:41:15Z
dc.date.available2010-05-06T21:41:15Z
dc.date.issued1995-11-20en_US
dc.identifier.citationQian, F.; Singh, R. K.; Dutta, S. K.; Pronko, P. P. (1995). "Laser deposition of diamondlike carbon films at high intensities." Applied Physics Letters 67(21): 3120-3122. <http://hdl.handle.net/2027.42/70135>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70135
dc.description.abstractUnhydrogenated diamondlike carbon (DLC) thin films have been deposited by laser ablation of graphite, using a high power Ti: sapphire solid state laser system. DLC films were deposited onto silicon substrates at room temperature with subpicosecond laser pulses, at peak intensities in the 4×1014–5×1015 W/cm2 range. A variety of techniques, including scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, spectroscopic ellipsometry (SE), and electron energy loss spectroscopy (EELS) have been used to analyze the film quality. Smooth, partially transparent films were produced, distinct from the graphite target. Sp3 volume fractions were found to be in the 50%–60% range, with Tauc band gaps ranging from 0.6 to 1.2 eV, depending on laser intensity. Kinetic energies carried by the carbon ions in the laser induced plasma were measured through time‐of‐flight (TOF) spectroscopy. Their most probable kinetic energies were found to be in the 700–1000 eV range, increasing with laser intensity. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent63718 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLaser deposition of diamondlike carbon films at high intensitiesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, The University of Florida, Gainesville, Florida 32611en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70135/2/APPLAB-67-21-3120-1.pdf
dc.identifier.doi10.1063/1.114853en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceS. J. Rzad, S. M. Gasworth, C. W. Reed, and M. W. DeVre, 1992 IEEE 35th International Power Sources Symposium, 358 (1992).en_US
dc.identifier.citedreferenceR. B. Jackman and L. H. Chua, Diam. Relat. Mater. DRMTE3INS1, 895 (1992).en_US
dc.identifier.citedreferenceB. Singh, S. McClelland, F. Tams III, B. Halon, O. Mesker, and D. Furst, Appl. Phys. Lett. APPLABAIP57, 2288 (1990).en_US
dc.identifier.citedreferenceY., Kokaku, H. Matsumoto, H. Inaba, S. Fujimaki, M. Kitoh, and K. Abe, IEEE Trans. Magn. 29, 3942 (1993).en_US
dc.identifier.citedreferenceG. Zhang, L. J. Guo, Z. Liu, and X. Zheng, Opt. Eng. OPEGARINS33, 1330 (1994).en_US
dc.identifier.citedreferenceK. Deng and W. H. Ko, IEEE Technical Digest, Cat. No. 92TH0403-x, 98 (1992).en_US
dc.identifier.citedreferenceD. L. Pappas, K. L. Saenger, J. Bruley, W. Kralow, J. J. Cuomo, T. Gu, and R. W. Collins, J. Appl. Phys. JAPIAUAIP71, 5675 (1992).en_US
dc.identifier.citedreferenceC. B. Collins, F. Davanloo, T. J. Lee, J. H. You, and H. Park, Mater. Res. Soc. Symp. Proc. MRSPDHINS285, 547 (1993).en_US
dc.identifier.citedreferenceJ. J. Cuomo, D. L. Pappas, J. Bruley, and J. P. Doyle, J. Appl. Phys. 70, 1706 (1991).en_US
dc.identifier.citedreferenceJ. Stevefelt and C. B. Collins, J. Phys. D JPAPBEINS24, 2149 (1991).en_US
dc.identifier.citedreferenceF. Davanloo, E. M. Juengerman, D. R. Jander, T. J. Lee, and C. B. Collins, J. Appl. Phys. JAPIAUAIP67, 2081 (1990).en_US
dc.identifier.citedreferenceS. Leppavuori, J. Levoska, J. Vaara, and O. Kusmartseva, Mater. Res. Soc. Symp. Proc. MRSPDHINS285, 557 (1993).en_US
dc.identifier.citedreferenceC. B. Collins, F. Davanloo, T. J. Lee, H. Park, and J. H. You, J. Vac. Sci. Technol. B JVTBD9AIP11, 1936 (1993).en_US
dc.identifier.citedreferenceJ. Squire and G. Mourou, Laser Focus World, June (1992); J. Squire, F. Salin, G. Mourou, and D. Harter, Opt. Lett. 16, 1965 (1991).en_US
dc.identifier.citedreferenceD. T. Peeler, P. T. Murray, L. Petry, and T. W. Haas, Mater. Res. Soc. Symp. Proc. MRSPDHINS235, 879 (1992).en_US
dc.identifier.citedreferenceK. Enke, Thin Solid Films THSFAPINS80, 227 (1981).en_US
dc.identifier.citedreferenceS. D. Berger, D. R. McKenzie, and P. J. Martin, J. Appl. Phys. JAPIAUAIP57, 285 (1988).en_US
dc.identifier.citedreferenceW. Demtröder and W. Jantz, Plasma Phys. PLPHBZINS12, 691 (1970).en_US
dc.identifier.citedreferenceD. L. Pappas, K. L. Saenger, J. J. Cuomo, and R. W. Dreyfus, J. Appl. Phys. JAPIAUAIP72, 3966 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.