Show simple item record

Effects of laser‐ablation target damage on particulate production investigated by laser scattering with deposited thin film and target analysis

dc.contributor.authorSpindler, H. L.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorLash, J. S.en_US
dc.date.accessioned2010-05-06T21:41:42Z
dc.date.available2010-05-06T21:41:42Z
dc.date.issued1996-06-03en_US
dc.identifier.citationSpindler, H. L.; Gilgenbach, R. M.; Lash, J. S. (1996). "Effects of laser‐ablation target damage on particulate production investigated by laser scattering with deposited thin film and target analysis." Applied Physics Letters 68(23): 3245-3247. <http://hdl.handle.net/2027.42/70140>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70140
dc.description.abstractExperiments have been carried out to correlate ablated particulate density and size to the number of KrF excimer laser (248 nm, 40 ns, <1.2 J) pulses incident on a single location of a pure solid aluminum target and to relate particulate production to target surface damage. An analysis of laser ablation deposited aluminum films on silicon substrates was used to determine the density of ablated particulate greater than 0.5 μm in diameter. For an undamaged target, the laser deposited particulate density was on the order of 8.6×105 cm−2 per 1000 shots. A damaged target (following 1000 laser pulses) produced a density on the order of 1.6×106 cm−2 per 1000 shots on the substrate. Dye laser optical scattering was also used to measure, in real time, the velocity of the particulate and the relative particulate density in the laser‐ablation plume versus target damage. Results indicated a rapid rise in the production of particulate as target damage was increased up to 3000 laser pulses; after this number of shots the density of particulate in the laser ablation plume saturated. A peak in the scattered light for each stage of target damage occurred 40 μs after the initial KrF laser pulse, translating to a velocity of about 100 m/s for the smaller particulate (<1 μm diameter). The later scattered signal, around 160 μs, was apparently due to the larger particulate (5–15 μm), traveling at a velocity of approximately 25 m/s. Particulate production is related to the formation of laser ablation‐induced cones on the damaged targets. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent367061 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffects of laser‐ablation target damage on particulate production investigated by laser scattering with deposited thin film and target analysisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering and Radiological Sciences Department, The University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70140/2/APPLAB-68-23-3245-1.pdf
dc.identifier.doi10.1063/1.116562en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceG. L. Doll, J. A. Sell, C. A. Taylor, and R. Clark, Phys. Rev. B 43, 6816 (1991); G. L. Doll, T. A. Perry, and J. A. Sell, Mater. Res. Soc. Symp. Proc. 201, 207 (1991).en_US
dc.identifier.citedreferenceS. R. Foltyn, in Pulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994), pp. 89–113.en_US
dc.identifier.citedreferenceL. Ganapathi, S. Giles, R. Rao, J. P. Zheng, and H. S. Kwok, Appl. Phys. Lett. APPLABAIP63, 2552 (1993).en_US
dc.identifier.citedreferenceT. Venkatesan, X. D. Wu, A. Inam, Y. Jeon, M. Croft, E. W. Chase, C. C. Chang, J. B. Wachtman, R. W. Odom, F. Radicati di Brozolo, and C. A. Magu, Appl. Phys. Lett. APPLABAIP53, 1431 (1988).en_US
dc.identifier.citedreferenceS. R. Foltyn, P. Tiwari, R. C. Dye, M. Q. Le, and X. D. Wu, Appl. Phys. Lett. APPLABAIP63, 1848 (1993).en_US
dc.identifier.citedreferenceH. U. Krebs and O. Bremert, Appl. Phys. Lett. APPLABAIP62, 2341 (1993).en_US
dc.identifier.citedreferenceS. Witanachchi, K. Ahmed, P. Sakthivel, and P. Mukherjee, Appl. Phys. Lett. APPLABAIP66, 1469 (1995).en_US
dc.identifier.citedreferenceG. Koren, R. J. Baseman, A. Gupta, M. I. Lutwyche, and R. B. Laibowitz, Appl. Phys. Lett. APPLABAIP56, 2144 (1990).en_US
dc.identifier.citedreferenceC. Doughty, A. T. Findikoglu, and T. Venkatesan, Appl. Phys. Lett. APPLABAIP66, 1276 (1995).en_US
dc.identifier.citedreferenceV. N. Bagratashvili, E. N. Antonov, E. N. Sobol, V. K. Popov, and S. M. Howdle, Appl. Phys. Lett. APPLABAIP66, 2451 (1995).en_US
dc.identifier.citedreferenceS. M. Kimbrell and E. S. Yeung, Appl. Spectrosc. APSPAYAIP43, 1248 (1989).en_US
dc.identifier.citedreferenceH. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).en_US
dc.identifier.citedreferenceD. B. Geohegan, Appl. Phys. Lett. APPLABAIP62, 1463 (1993).en_US
dc.identifier.citedreferenceJ. E. Rothenburg and R. Kelly, Nucl. Instrum. Methods B NIMBEUINS1, 291 (1984).en_US
dc.identifier.citedreferenceR. Kelly and J. E. Rothenburg, Nucl. Instrum. Methods B NIMBEUINS7/8, 755 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.