Show simple item record

Magnetotransport in manganite trilayer junctions grown by 90° off-axis sputtering

dc.contributor.authorNoh, J. S.en_US
dc.contributor.authorNath, T. K.en_US
dc.contributor.authorEom, Chang-Beomen_US
dc.contributor.authorSun, J. Z.en_US
dc.contributor.authorTian, Weien_US
dc.contributor.authorPan, Xiaoqingen_US
dc.date.accessioned2010-05-06T21:42:27Z
dc.date.available2010-05-06T21:42:27Z
dc.date.issued2001-07-09en_US
dc.identifier.citationNoh, J. S.; Nath, T. K.; Eom, C. B.; Sun, J. Z.; Tian, W.; Pan, X. Q. (2001). "Magnetotransport in manganite trilayer junctions grown by 90° off-axis sputtering." Applied Physics Letters 79(2): 233-235. <http://hdl.handle.net/2027.42/70148>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70148
dc.description.abstractWe report magnetotransport studies on La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 trilayer junctions, fabricated using 90° off-axis sputtering. Films were grown on both (001) (LaAlO3)0.3–(Sr2AlTaO6)0.7(LaAlO3)0.3–(Sr2AlTaO6)0.7 and (110) NdGaO3NdGaO3 substrates. The sputtered trilayers show improved junction resistance uniformity over those made using pulsed laser deposition. Cross-sectional transmission electron microscopy and atomic force microscopy studies confirm smooth interfaces and a uniform barrier. Magnetoresistances up to ∼100% are observed for junctions on (001) (LaAlO3)0.3–(Sr2AlTaO6)0.7(LaAlO3)0.3–(Sr2AlTaO6)0.7 with a 30 Å barrier at 13 K and around 100 Oe. Junction magnetoresistance versus magnetic field behavior is more stable, indicating improved transport and magnetic homogeneity across the junction. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent141217 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMagnetotransport in manganite trilayer junctions grown by 90° off-axis sputteringen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706en_US
dc.contributor.affiliationotherIBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70148/2/APPLAB-79-2-233-1.pdf
dc.identifier.doi10.1063/1.1383276en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceDoped manganites in this case refer to La1−x(Ca, Sr)xMnO3,La1−x(Ca,Sr)xMnO3, the so-called colossal magnetoresistance materials, such as described by S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science SCIEAS264, 413 (1994).en_US
dc.identifier.citedreferenceJ. Z. Sun, L. Krusin-Elbaum, P. R. Duncombe, A. Gupta, and R. B. Laibowitz, Appl. Phys. Lett. APPLAB70, 1769 (1997).en_US
dc.identifier.citedreferenceM. Viret, M. Drouet, J. P. Contour, C. Fermon, and A. Fert, Europhys. Lett. EULEEJ39, 545 (1997).en_US
dc.identifier.citedreferenceJ. O’Donnell, A. E. Andrus, S. Oh, E. V. Colla, and J. N. Eckstein, Appl. Phys. Lett. APPLAB76, 1914 (2000).en_US
dc.identifier.citedreferenceM.-H. Jo, N. D. Mathur, N. K. Todd, and M. G. Blamire, Phys. Rev. B PRBMDO61, R14905 (2000).en_US
dc.identifier.citedreferenceJ.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. PRLTAO81, 1953 (1998).en_US
dc.identifier.citedreferenceL. Néel, C. R. Acad. Sci. ZZZZZZ255, 1676 (1962).en_US
dc.identifier.citedreferenceJ. Z. Sun, D. W. Abraham, K. Roche, and S. S. P. Parkin, Appl. Phys. Lett. APPLAB73, 1008 (1998).en_US
dc.identifier.citedreferenceA. Gupta and J. Z. Sun, J. Magn. Magn. Mater. JMMMDC200, 24 (1999).en_US
dc.identifier.citedreferenceJ. Z. Sun, W. J. Gallagher, P. R. Duncombe, L. Krusin-Elbaum, R. A. Altman, A. Gupta, Yu Lu, G. Q. Gong, and G. Xiao, Appl. Phys. Lett. APPLAB69, 3266 (1996).en_US
dc.identifier.citedreferenceM. Julliere, Phys. Lett. PYLAAG54A, 225 (1975).en_US
dc.identifier.citedreferenceW. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and G. Xiao, J. Appl. Phys. JAPIAU81, 3741 (1997).en_US
dc.identifier.citedreferenceW. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. JAPIAU41, 1915 (1970).en_US
dc.identifier.citedreferenceK. Knorr and J. D. Leslic, Solid State Commun. SSCOA412, 615 (1973).en_US
dc.identifier.citedreferenceX. W. Li, Yu Lu, G. Q. Gong, G. Xiao, A. Gupta, P. Lecoeur, J. Z. Sun, Y. Y. Wang, and V. P. Dravid, J. Appl. Phys. JAPIAU81, 5509 (1997).en_US
dc.identifier.citedreferenceT. Obata, T. Manako, Y. Shimakawa, and Y. Kubo, Appl. Phys. Lett. APPLAB74, 290 (1999).en_US
dc.identifier.citedreferenceJ. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. APPLAB69, 708 (1996).en_US
dc.identifier.citedreferenceJ. Z. Sun, Philos Trans. R. Soc. London ZZZZZZ356, 1693 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.