Show simple item record

Nanoscale thermal transport

dc.contributor.authorCahill, David G.en_US
dc.contributor.authorFord, Wayne K.en_US
dc.contributor.authorGoodson, Kenneth E.en_US
dc.contributor.authorMahan, Gerald D.en_US
dc.contributor.authorMajumdar, Arunen_US
dc.contributor.authorMaris, Humphrey J.en_US
dc.contributor.authorMerlin, Robertoen_US
dc.contributor.authorPhillpot, Simon R.en_US
dc.date.accessioned2010-05-06T21:43:40Z
dc.date.available2010-05-06T21:43:40Z
dc.date.issued2003-01-15en_US
dc.identifier.citationCahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R. (2003). "Nanoscale thermal transport." Journal of Applied Physics 93(2): 793-818. <http://hdl.handle.net/2027.42/70161>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70161
dc.description.abstractRapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent804401 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNanoscale thermal transporten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Material Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801en_US
dc.contributor.affiliationotherIntel Corporation, 5200 NE Elam Young Parkway, Hillsboro, Orgeon 97124en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Stanford University, Palo Alto, California 94305en_US
dc.contributor.affiliationotherDepartment of Physics, Pennsylvania State University, University Park, Pennsylvania 16802en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, University of California, Berkeley, California 94720en_US
dc.contributor.affiliationotherDepartment of Physics, Brown University, Providence, Rhode Island 02912en_US
dc.contributor.affiliationotherMaterials Science Division, Argonne National Laboratory, Argonne, Illinois 60439en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70161/2/JAPIAU-93-2-793-1.pdf
dc.identifier.doi10.1063/1.1524305en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceD. G. Cahill, K. E. Goodson, and A. Majumdar, J. Heat Transfer JHTRAO124, 223 (2002).en_US
dc.identifier.citedreferenceI. M. Khalatnikov, Sov. Phys. JETP SPHJAR22, 687 (1952).en_US
dc.identifier.citedreferenceE. T. Swartz and R. O. Pohl, Rev. Mod. Phys. RMPHAT61, 605 (1989).en_US
dc.identifier.citedreferenceP. L. Kapitza, J. Phys. (Moscow) JOPYA64, 181 (1941).en_US
dc.identifier.citedreferenceL. J. Challis, K. Dransfeld, and J. Wilks, Proc. R. Soc. London, Ser. A PRLAAZ260, 31 (1961).en_US
dc.identifier.citedreferenceJ. Weber, W. Sandmann, W. Dietsche, and H. Kinder, Phys. Rev. Lett. PRLTAO40, 1469 (1978).en_US
dc.identifier.citedreferenceJ. R. Olson and R. O. Pohl, J. Low Temp. Phys. JLTPAC94, 539 (1994).en_US
dc.identifier.citedreferenceH. Kinder and K. Weiss, J. Phys.: Condens. Matter JCOMEL5, 2063 (1993).en_US
dc.identifier.citedreferenceT. Nakayama, in Progress in Low Temperature Physics, edited by D. F. Brewer (North-Holland, Amsterdam, 1989), p. 115.en_US
dc.identifier.citedreferenceR. J. Stoner and H. J. Maris, Phys. Rev. B PRBMDO48, 16373 (1993).en_US
dc.identifier.citedreferenceA. N. Smith, J. L. Hostetler, and P. M. Norris, Microscale Thermophys. Eng. MTENFP4, 51 (2000).en_US
dc.identifier.citedreferenceD. G. Cahill, A. Bullen, and S.-M. Lee, High Temp.-High Press. HTHPAK32, 135 (2000).en_US
dc.identifier.citedreferenceS.-M. Lee and D. G. Cahill, J. Appl. Phys. JAPIAU81, 2590 (1997).en_US
dc.identifier.citedreferenceE.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo, and J.-G. Yoon, Appl. Phys. Lett. APPLAB76, 3864 (2000).en_US
dc.identifier.citedreferenceK. H. Wichert, C. Reimann, G. Blahusch, and H. Kinder, Ann. Phys. ZZZZZZ4, 175 (1995).en_US
dc.identifier.citedreferenceJ. P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998).en_US
dc.identifier.citedreferenceM. Msall, W. Dietsche, K. J. Friedland, and Q. Y. Tong, Phys. Rev. Lett. PRLTAO85, 598 (2000).en_US
dc.identifier.citedreferenceH.-Y. Hao, D. K. Sadana, and H. J. Maris, Electrochem. Solid-State Lett. ESLEF61, 54 (1998).en_US
dc.identifier.citedreferenceH. T. Grahn, H. J. Maris, and J. Tauc, IEEE J. Quantum Electron. IEJQA725, 2562 (1989).en_US
dc.identifier.citedreferenceC. J. K. Richardson, M. J. Ehrlich, and J. W. Wagner, J. Appl. Phys. JAPIAU85, 861 (1999).en_US
dc.identifier.citedreferenceA. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, Appl. Phys. Lett. APPLAB72, 2844 (1998).en_US
dc.identifier.citedreferenceC. K. Sun, J. C. Liang, C. J. Stanton, A. Abare, L. Coldren, and S. DenBaars, Appl. Phys. Lett. APPLAB75, 1249 (1999).en_US
dc.identifier.citedreferenceÜ. Özgür, C.-W. Lee, and H. O. Everitt, Phys. Rev. Lett. PRLTAO86, 5604 (2001).en_US
dc.identifier.citedreferenceH. S. Carslaw and J. C. Jaeger, in Conduction of Heat in Solids (Oxford University Press, New York, 1959), pp. 109–112.en_US
dc.identifier.citedreferenceJ. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).en_US
dc.identifier.citedreferenceA. Majumdar, J. Heat Transfer JHTRAO115, 7 (1993).en_US
dc.identifier.citedreferenceP. B. Allen and J. L. Feldman, Phys. Rev. B PRBMDO48, 12581 (1993).en_US
dc.identifier.citedreferenceD. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995).en_US
dc.identifier.citedreferenceP. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B PRBMDO65, 144306 (2002).en_US
dc.identifier.citedreferenceW. E. Pickett, J. L. Feldman, and J. Deppe, Modell. Simul. Mater. Sci. Eng. MSMEEU4, 409 (1996).en_US
dc.identifier.citedreferenceA. Maiti, G. D. Mahan, and S. T. Pantelides, Solid State Commun. SSCOA4102, 517 (1997).en_US
dc.identifier.citedreferenceP. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B PRBMDO65, 144306 (2002).en_US
dc.identifier.citedreferenceP. Keblinski, S. R. Phillpot, D. Wolf, and H. Gleiter, J. Acoust. Soc. Am. JASMAN80, 717 (1997).en_US
dc.identifier.citedreferenceC.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. JAPIAU81, 6692 (1997).en_US
dc.identifier.citedreferenceE. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938).en_US
dc.identifier.citedreferenceW. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, FL, 1975).en_US
dc.identifier.citedreferenceR. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1972).en_US
dc.identifier.citedreferenceM. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, New York, 1992).en_US
dc.identifier.citedreferenceS. Rosseland, Theoretical Astrophysics: Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes (Clarendon, Oxford, 1936).en_US
dc.identifier.citedreferenceD. A. Young and H. J. Maris, Phys. Rev. B PRBMDO40, 3685 (1989).en_US
dc.identifier.citedreferenceG. Fagas, A. G. Kozorezov, C. J. Lambert, and J. K. Wigmore, Physica B PHYBE3263–264, 739 (1999).en_US
dc.identifier.citedreferenceP. K. Schelling, S. R. Phillpot, and P. Keblinski, Appl. Phys. Lett. APPLAB80, 2484 (2002).en_US
dc.identifier.citedreferenceH. B. G. Casimir, Physica ZZZZZZ5, 595 (1938).en_US
dc.identifier.citedreferenceC. Oligschleger and J. C. Schön, Phys. Rev. B PRBMDO59, 4125 (1999).en_US
dc.identifier.citedreferenceB. C. Larson, J. Z. Tischler, and D. M. Mills, J. Mater. Res. JMREEE1, 144 (1986).en_US
dc.identifier.citedreferenceM. L. Huberman and A. W. Overhauser, Phys. Rev. B PRBMDO50, 2865 (1994).en_US
dc.identifier.citedreferenceA. V. Sergeev, Phys. Rev. B PRBMDO58, R10199 (1998).en_US
dc.identifier.citedreferenceG. D. Mahan, Many-Particle Physics (Kluwer-Plenum, Dordrecht, 2000).en_US
dc.identifier.citedreferenceW. R. Frensley, Rev. Mod. Phys. RMPHAT62, 745 (1990).en_US
dc.identifier.citedreferenceJ. R. Hellums and W. R. Frensley, Phys. Rev. B PRBMDO49, 2904 (1994).en_US
dc.identifier.citedreferenceSpecial issue, IEEE Trans. Electron Devices 45, (1998).en_US
dc.identifier.citedreferenceJ. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl, Proc. IEEE IEEPAD89, 305 (2001).en_US
dc.identifier.citedreferenceW. P. King, T. W. Kenny, K. E. Goodson, G. Cross, M. Despont, U. Durig, H. Rothuizen, G. K. Binnig, and P. Vettiger, Appl. Phys. Lett. APPLAB78, 1300 (2001).en_US
dc.identifier.citedreferenceP. D. Vu, Xiao Liu, and R. O. Pohl, Phys. Rev. B PRBMDO63, 125421 (2001).en_US
dc.identifier.citedreferenceM. Asheghi, K. Kurabayashi, K. E. Goodson, R. Kasnavi, and J. D. Plummer, in Proceedings of the 33rd ASME/AIChE National Heat Transfer Conference (Asme, New York, 1999).en_US
dc.identifier.citedreferenceM. Von Arx, O. Paul, and H. Baltes, J. Microelectromech. Syst. JMIYET9, 136 (2000).en_US
dc.identifier.citedreferenceS. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, Int. J. Thermophys. IJTHDY22, 605 (2001).en_US
dc.identifier.citedreferenceA. D. McConnell, U. Srinivasan, M. Asheghi, and K. E. Goodson, J. Microelectromech. Syst. JMIYET10, 360 (2001).en_US
dc.identifier.citedreferenceC. J. Glassbrenner and G. A. Slack, Phys. Rev. A PRVAAH134, 1058 (1964).en_US
dc.identifier.citedreferenceM. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer JHTRAO120, 30 (1998).en_US
dc.identifier.citedreferenceM. G. Holland, Phys. Rev. PHRVAO132, 2461 (1963).en_US
dc.identifier.citedreferenceJ. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960).en_US
dc.identifier.citedreferenceK. E. Goodson, J. Heat Transfer JHTRAO118, 279 (1996).en_US
dc.identifier.citedreferenceY. S. Ju and K. E. Goodson, Appl. Phys. Lett. APPLAB74, 3005 (1999).en_US
dc.identifier.citedreferenceR. A. Guyer and J. A. Krumhansl, Phys. Rev. PHRVAO148, 766 (1966).en_US
dc.identifier.citedreferenceG. Chen and C. L. Tien, J. Thermophys. Heat Transfer JTHTEO7, 311 (1993).en_US
dc.identifier.citedreferenceG. Chen, S. Q. Zhou, D.-Y. Yao, C. J. Kim, X. Y. Zheng, Z. L. Liu, and K. L. Wang, in Proceedings from 17th International Conference on Thermoelectrics (IEEE, Piscataway, NJ, 1998), pp. 202–205.en_US
dc.identifier.citedreferenceC. Moglestue, Comput. Methods Appl. Mech. Eng. CMMECC30, 173 (1982).en_US
dc.identifier.citedreferenceC. Jacoboni and L. Reggiani, Rev. Mod. Phys. RMPHAT55, 642 (1983).en_US
dc.identifier.citedreferenceP. Lugli, P. Bordone, L. Reggiani, M. Reiger, P. Kocevar, and S. M. Goodnick, Phys. Rev. B PRBMDO39, 7852 (1989).en_US
dc.identifier.citedreferenceM. V. Fischetti and S. E. Laux, Phys. Rev. B PRBMDO38, 9721 (1988).en_US
dc.identifier.citedreferenceM. V. Fischetti and S. E. Laux, Phys. Rev. B PRBMDO48, 2244 (1993).en_US
dc.identifier.citedreferenceT. Klistner, J. E. VanCleve, H. E. Fischer, and R. O. Pohl, Phys. Rev. B PRBMDO38, 7576 (1988).en_US
dc.identifier.citedreferenceR. B. Peterson, J. Heat Transfer JHTRAO116, 815 (1994).en_US
dc.identifier.citedreferenceS. Mazumder and A. Majumdar, J. Heat Transfer JHTRAO123, 749 (2001).en_US
dc.identifier.citedreferenceM. G. Holland, Phys. Rev. PHRVAO134, A471 (1964).en_US
dc.identifier.citedreferenceJ. Lai and A. Majumdar, J. Appl. Phys. JAPIAU79, 7353 (1996).en_US
dc.identifier.citedreferenceG. D. Mahan, J. Appl. Phys. JAPIAU58, 2242 (1985).en_US
dc.identifier.citedreferenceG. Chen, J. Heat Transfer JHTRAO118, 539 (1996).en_US
dc.identifier.citedreferenceP. G. Sverdrup, Y. S. Ju, and K. E. Goodson, J. Heat Transfer JHTRAO123, 130 (2001).en_US
dc.identifier.citedreferenceP. G. Sverdrup, S. Sinha, M. Asheghi, U. Srinivasan, and K. E. Goodson, Appl. Phys. Lett. APPLAB78, 3331 (2001).en_US
dc.identifier.citedreferenceK. Seeger, Semiconductor Physics, Springer Series in Solid State Sciences (Springer, Berlin, 1985), Vol. 40, p. 198.en_US
dc.identifier.citedreferenceD. D. Kim and P. Y. Yu, Phys. Rev. Lett. PRLTAO64, 946 (1990).en_US
dc.identifier.citedreferenceB. Jusserand and M. Cardona, in Light Scattering in Solids V, Topics in Applied Physics, edited by M. Cardona and G. Güntherodt (Springer, Heidelberg, 1989), Vol. 66, p. 49.en_US
dc.identifier.citedreferenceO. Madelung, Introduction to Solid State Theory (Springer, Berlin, 1978), p. 314.en_US
dc.identifier.citedreferenceK. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, Phys. Rev. B PRBMDO60, 8262 (1999).en_US
dc.identifier.citedreferenceP. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice-Hall, Upper Saddle River, NJ, 1997).en_US
dc.identifier.citedreferenceJ. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, Phys. Rev. Lett. PRLTAO86, 4930 (2001).en_US
dc.identifier.citedreferenceK. Schwab, E. A. Henricskon, J. M. Worlock, and M. L. Roukes, Nature (London) NATUAS404, 974 (2000).en_US
dc.identifier.citedreferenceS. Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. Lett. PRLTAO84, 4613 (2000).en_US
dc.identifier.citedreferenceM. A. Osman and D. Srivastava, Nanotechnology NNOTER12, 21 (2001).en_US
dc.identifier.citedreferenceL. D. Hicks and M. S. Dresselhaus, Phys. Rev. B PRBMDO47, 16631 (1993).en_US
dc.identifier.citedreferenceJ. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B PRBMDO59, R2514 (1999).en_US
dc.identifier.citedreferenceP. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. PRLTAO87, 215502 (2001).en_US
dc.identifier.citedreferenceJ. Heremans and C. P. Beetz, Jr., Phys. Rev. B PRBMDO32, 1981 (1985).en_US
dc.identifier.citedreferenceS. Volz and D. Lemonnier, Phys. Low-Dimens. Semicond. Struct. 59EEAO5–6, 91 (2000).en_US
dc.identifier.citedreferenceJ. Zou and A. Balandin, J. Appl. Phys. JAPIAU89, 2932 (2001).en_US
dc.identifier.citedreferenceM. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, New York, 1986).en_US
dc.identifier.citedreferenceF. P. Wyart and P. G. de Gennes, Phys. Low-Dimens. Semicond. Struct. 59EEAO1, 93 (2000).en_US
dc.identifier.citedreferenceK. Kurabayashi and K. E. Goodson, J. Appl. Phys. JAPIAU86, 1925 (1999).en_US
dc.identifier.citedreferenceInternational Technology Roadmap for Semiconductors, 1998 Update (Semiconductor Industry Association, San Jose, CA, 1999).en_US
dc.identifier.citedreferenceY. L. Shen, J. Vac. Sci. Technol. B JVTBD917, 2115 (1999).en_US
dc.identifier.citedreferenceB. C. Daly, G. A. Antonelli, H. J. Maris, W. K. Ford, L. Wong, and E. Andideh, Physica B PHYBE3316–317, 254 (2002).en_US
dc.identifier.citedreferenceW. S. Capinski and H. J. Maris, Rev. Sci. Instrum. RSINAK67, 2720 (1996).en_US
dc.identifier.citedreferenceE. B. Varner, T. Marieb, A. S. Mack, J. Lee, W. K. Meyer, and K. E. Goodson, Mater. Res. Soc. Symp. Proc. MRSPDH473, 279 (1997).en_US
dc.identifier.citedreferenceA. Grill and V. J. Patel, J. Appl. Phys. JAPIAU85, 3314 (1999).en_US
dc.identifier.citedreferenceB. K. Hwang, M. J. Loboda, G. A. Cerny, R. F. Schneider, J. A. Seifferly, and T. Washer, Proceedings of the IEEE 2000 International Interconnect Technology Conference (IEEE, Piscataway, NJ, 2000), pp. 52–54.en_US
dc.identifier.citedreferenceD. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B PRBMDO46, 6131 (1992).en_US
dc.identifier.citedreferenceC. Hu, M. Morgen, P. S. Ho, A. Jain, W. N. Gill, J. L. Plawsky, and P. C. Wayner, Appl. Phys. Lett. APPLAB77, 145 (2000).en_US
dc.identifier.citedreferenceR. M. Costescu, A. J. Bullen, G. Matamis, K. E. O’Hara, and D. G. Cahill, Phys. Rev. B PRBMDO56, 094205 (2002).en_US
dc.identifier.citedreferenceD. G. Cahill, M. Katiyar, and J. R. Abelson, Phys. Rev. B PRBMDO50, 6077 (1994).en_US
dc.identifier.citedreferenceR. Landauer, in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978), pp. 2–43.en_US
dc.identifier.citedreferenceJ. G. Berryman, J. Acoust. Soc. Am. JASMAN91, 551 (1992).en_US
dc.identifier.citedreferenceT. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum. RSINAK72, 2139 (2001).en_US
dc.identifier.citedreferenceK. An, K. S. Ravichandran, R. E. Dutton, and S. L. Semiatin, J. Am. Ceram. Soc. JACTAW82, 399 (1999).en_US
dc.identifier.citedreferenceD. G. Cahill and S.-M. Lee, Microscale Thermophys. Eng. MTENFP1, 47 (1997).en_US
dc.identifier.citedreferenceS.-M. Lee, G. Matamis, D. G. Cahill, and W. P. Allen, Microscale Thermophys. Eng. MTENFP2, 31 (1998).en_US
dc.identifier.citedreferenceG. Soyez, J. A. Eastman, L. J. Thompson, G.-R. Bai, P. M. Baldo, A. W. McCormick, R. J. DiMelfi, A. A. Elmustafa, M. F. Tambwe, and D. S. Stone, Appl. Phys. Lett. APPLAB77, 1155 (2000).en_US
dc.identifier.citedreferenceV. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. PRLTAO43, 2012 (1979).en_US
dc.identifier.citedreferenceM. V. Simkin and G. D. Mahan, Phys. Rev. Lett. PRLTAO84, 927 (2000).en_US
dc.identifier.citedreferenceS. Y. Ren and J. D. Dow, Phys. Rev. B PRBMDO25, 3750 (1982).en_US
dc.identifier.citedreferenceS.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. APPLAB70, 2957 (1997).en_US
dc.identifier.citedreferenceT. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. Goorsky, T. Redetic, R. Gronsky, T. Koga, and M. S. Dresselhaus, Superlattices Microstruct. SUMIEK28, 199 (2000).en_US
dc.identifier.citedreferenceT. Yao, Appl. Phys. Lett. APPLAB51, 1798 (1987).en_US
dc.identifier.citedreferenceX. Y. Yu, G. Chen, A. Verma, and J. S. Smith, Appl. Phys. Lett. APPLAB67, 3554 (1995).en_US
dc.identifier.citedreferenceW. S. Capinski, H. J. Maris, M. Cardona, D. S. Katzer, K. Ploog, and T. Ruf, Physica ZZZZZZ263–264, 530 (1999).en_US
dc.identifier.citedreferenceS. T. Huxtable, A. R. Abramson, A. Majumdar, C. L. Tien, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, in Proceedings of the ASME IMECE (ASME, New York, 2001).en_US
dc.identifier.citedreferenceT. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, Microscale Thermophys. Eng. MTENFP5, 225 (2001).en_US
dc.identifier.citedreferenceM. A. Afromowitz, J. Appl. Phys. JAPIAU44, 1292 (1973).en_US
dc.identifier.citedreferenceG. Mahan, B. Sales, and J. Sharp, Phys. Today PHTOAD50, 42 (1997).en_US
dc.identifier.citedreferenceR. Venkatasubramanian, Phys. Rev. B PRBMDO61, 3091 (2000).en_US
dc.identifier.citedreferenceM. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, J. Appl. Phys. JAPIAU90, 763 (2001).en_US
dc.identifier.citedreferenceW. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, Phys. Rev. B PRBMDO59, 8105 (1999).en_US
dc.identifier.citedreferenceS. T. Huxtable, A. R. Abramson, A. Majumdar, C. L. Tien, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke (unpublished).en_US
dc.identifier.citedreferenceS. T. Huxtable, A. R. Abramson, A. Majumdar, C. L. Tien, P. Abraham, C. LaBounty, X. Fan, Y.-J. Chen, J. E. Bowers, and A. Shakouri (unpublished).en_US
dc.identifier.citedreferenceP. Hyldgaard and G. D. Mahan, Phys. Rev. B PRBMDO56, 10754 (1997).en_US
dc.identifier.citedreferenceG. Chen and M. Neagu, Appl. Phys. Lett. APPLAB71, 2761 (1997).en_US
dc.identifier.citedreferenceG. Chen, Phys. Rev. B PRBMDO57, 14958 (1998).en_US
dc.identifier.citedreferenceG. Chen, T. Borca-Tasciuc, B. Yang, D. Song, W. Liu, T. Zeng, and D. Achimov, Therm. Sci. Eng. TSENFR7, 43 (1999).en_US
dc.identifier.citedreferenceS. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B PRBMDO60, 2627 (1999).en_US
dc.identifier.citedreferenceG. Chen, J. Heat Transfer JHTRAO121, 945 (1999).en_US
dc.identifier.citedreferenceW. E. Bies, R. J. Radtke, and H. Ehrenreich, J. Appl. Phys. JAPIAU88, 1498 (2000).en_US
dc.identifier.citedreferenceA. A. Kiselev, K. W. Kim, and M. A. Stroscio, Phys. Rev. B PRBMDO62, 6896 (2000).en_US
dc.identifier.citedreferenceB. Yang and G. Chen, Phys. Low-Dimens. Structures 59EEAO5–6, 37 (2000).en_US
dc.identifier.citedreferenceS. Volz, J. B. Saulnier, G. Chen, and P. Beauchamp, Microelectron. J. MICEB99–10, 815 (2000).en_US
dc.identifier.citedreferenceM. Bartkowiak and G. D. Mahan, in Semiconductors and Semimetals (Academic, New York, 2001), Chap. 8.en_US
dc.identifier.citedreferenceA. Khitun, A. Balandin, J. L. Liu, and K. L. Wang, J. Appl. Phys. JAPIAU88, 696 (2000).en_US
dc.identifier.citedreferenceA. R. Abramson, C. L. Tien, and A. Majumdar, J. Heat Transfer JHTRAO124, 963 (2002).en_US
dc.identifier.citedreferenceB. C. Daly and H. J. Maris, Physica B PHYBE3316–317, 247 (2002).en_US
dc.identifier.citedreferenceP. Hyldgaard and G. D. Mahan, in Thermal Conductivity (Technomic, Lancaster, PA, 1996), p. 172.en_US
dc.identifier.citedreferenceH. Kato, S. Tamura, and H. J. Maris, Phys. Rev. B PRBMDO53, 7884 (1996).en_US
dc.identifier.citedreferenceG. Chen, T. Zeng, T. Borca-Tasciuc, and D. Song, Mater. Sci. Eng., A MSAPE3292, 155 (2000).en_US
dc.identifier.citedreferenceB. C. Daly, H. J. Maris, S. Tamura, and K. Imamura (unpublished).en_US
dc.identifier.citedreferenceA. Asenov, R. Balasubramaniam, A. R. Brown, J. H. Davies, and S. Saini, IEDM Tech. Dig. ZZZZZZ2000, 279 (2000).en_US
dc.identifier.citedreferenceD. A. Young, C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, in Phonon Scattering in Condensed Matter, edited by A. C. Anderson and J. P. Wolfe (Springer, Berlin, 1986), p. 49.en_US
dc.identifier.citedreferenceC. A. Paddock and G. L. Eesley, J. Appl. Phys. JAPIAU60, 285 (1986).en_US
dc.identifier.citedreferenceO. W. Käding, H. Skurk, and K. E. Goodson, Appl. Phys. Lett. APPLAB65, 1629 (1994).en_US
dc.identifier.citedreferenceB. M. Clemens, G. L. Eesley, and C. A. Paddock, Phys. Rev. B PRBMDO37, 1085 (1988).en_US
dc.identifier.citedreferenceN. Taketoshi, T. Baba, and A. Ono, Jpn. J. Appl. Phys., Part 2 JAPLD838, L1268 (1999).en_US
dc.identifier.citedreferenceL. Shi, S. Plyasunov, A. Bachtold, P. L. McEuen, and A. Majumdar, Appl. Phys. Lett. APPLAB77, 4295 (2000).en_US
dc.identifier.citedreferenceC. C. Williams and H. K. Wickramasinghe, Appl. Phys. Lett. APPLAB49, 1587 (1986).en_US
dc.identifier.citedreferenceA. Majumdar, Annu. Rev. Mater. Sci. ARMSCX29, 505 (1999).en_US
dc.identifier.citedreferenceG. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. PRLTAO56, 930 (1986).en_US
dc.identifier.citedreferenceK. Luo, R. W. Herrick, A. Majumdar, and P. Petroff, Appl. Phys. Lett. APPLAB71, 1604 (1997).en_US
dc.identifier.citedreferenceA. Hammiche, D. J. Hourston, H. M. Pollock, M. Reading, and M. Song, J. Vac. Sci. Technol. B JVTBD914, 1486 (1996).en_US
dc.identifier.citedreferenceL. Shi, O. Kwon, A. Miner, and A. Majumdar, J. Microelectromech. Syst. JMIYET10, 370 (2001).en_US
dc.identifier.citedreferenceL. Shi and A. Majumdar, J. Heat Transfer JHTRAO124, 329 (2002).en_US
dc.identifier.citedreferenceL. D. Bell and W. J. Kaiser, Annu. Rev. Mater. Sci. ARMSCX26, 189 (1996).en_US
dc.identifier.citedreferenceG. O. Smith, T. Juhasz, W. E. Bron, and Y. B. Levinson, Phys. Rev. Lett. PRLTAO68, 2366 (1992).en_US
dc.identifier.citedreferenceR. Merlin, Solid State Commun. SSCOA4102, 207 (1997).en_US
dc.identifier.citedreferenceD. J. Dieleman, A. F. Koenderink, M. G. A. Van Veghel, A. F. M. Arts, and H. W. de Wijn, Phys. Rev. B PRBMDO64, 174304 (2001).en_US
dc.identifier.citedreferenceJ. J. Baumberg, D. A. Williams, and K. Köhler, Phys. Rev. Lett. PRLTAO78, 3358 (1997).en_US
dc.identifier.citedreferenceH.-Y. Hao and H. J. Maris, Phys. Rev. Lett. PRLTAO84, 5556 (2000).en_US
dc.identifier.citedreferenceA. Macovski, Medical Imaging Systems (Prentice Hall, Englewood Cliffs, NJ, 1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.