Show simple item record

Electron beam ablation of materials

dc.contributor.authorKovaleski, S. D.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorAng, L. K.en_US
dc.contributor.authorLau, Y. Y.en_US
dc.date.accessioned2010-05-06T21:46:00Z
dc.date.available2010-05-06T21:46:00Z
dc.date.issued1999-12-15en_US
dc.identifier.citationKovaleski, S. D.; Gilgenbach, R. M.; Ang, L. K.; Lau, Y. Y. (1999). "Electron beam ablation of materials." Journal of Applied Physics 86(12): 7129-7138. <http://hdl.handle.net/2027.42/70186>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70186
dc.description.abstractThe channelspark, a low accelerating voltage, high current electron beam accelerator, has been used for ablation of materials applied to thin film deposition. The channelspark operates at accelerating voltages of 10 to 20 kV with ∼1500 A beam currents. The electron beam ionizes a low-pressure gas fill (10–20 mTorr Ar or N2)N2) to compensate its own space charge, allowing ion focused transport. Ablation of TiN, Si, and fused silica has been studied through several plasma diagnostics. In addition, thin films of SiO2SiO2 have been deposited and analyzed. Strong optical emission from ionized species, persisting for several microseconds, was observed in the electron beam ablated plumes. Free electron temperatures were inferred from relative emission intensities to be between 1.1 and 1.2 eV. Dye-laser-resonance-absorption photography showed Si atom plume expansion velocities from 0.38 to 1.4 cm/μs for several pressures of Ar or N2N2 background gas. A complex, multilobed plume structure was also observed, yielding strong indications that an electron beam instability is occurring, which is dependent upon the conductivity of the target. Nonresonant interferometry yielded line-averaged electron densities from 1.6 to 3.7×1023 m−33.7×1023m−3 near the target surface. Resonant UV interferometry performed on Si neutral atoms generated in the ablation plumes of fused silica targets measured line integrated densities of up to 1.6×1016 cm−2,1.6×1016cm−2, with the total number of ablated silicon neutrals calculated to be in the range 2.0×10152.0×1015 to 5.0×1013.5.0×1013. Electron beam deposited films of fused silica were microscopically rough, with a thickness variation of 7%. The average SiO2SiO2 deposition rate was found to be about 0.66 nm/shot. The electron beam-deposited fused silica films had accurately maintained stoichiometry. Ablated particulate had an average diameter near 60 nm, with a most probable diameter between 40 and 60 nm. For SiO2SiO2 targets, the mass of material ablated in the form of particulate made up only a few percent of the deposited film mass, the remainder being composed of atomized and ionized material. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent433636 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleElectron beam ablation of materialsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70186/2/JAPIAU-86-12-7129-1.pdf
dc.identifier.doi10.1063/1.371802en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. P. van Ingen, J. Appl. Phys. JAPIAU76, 8055 (1994).en_US
dc.identifier.citedreferenceJ. Hermann, C. Boulmer-Leborgne, and D. Hong, J. Appl. Phys. JAPIAU83, 691 (1998).en_US
dc.identifier.citedreferenceX. T. Wang, B. Y. Man, G. T. Wang, Z. Zhao, Y. Liao, B. Z. Xu, Y. Y. Xia, L. M. Mei, and X. Y. Hu, J. Appl. Phys. JAPIAU80, 1783 (1996).en_US
dc.identifier.citedreferenceJ. S. Lash, R. M. Gilgenbach, and H. L. Spindler, J. Appl. Phys. JAPIAU79, 2287 (1996).en_US
dc.identifier.citedreferenceR. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, and G. L. Doll, J. Appl. Phys. JAPIAU76, 5457 (1994).en_US
dc.identifier.citedreferenceJ. M. Gonzalez, M. I. Montero, L. Vazquez, J. A. Martin Gago, D. Givord, C. de Julian, and K. O’Grady, IEEE Trans. J. Magn. Jpn. ITJJER34, 1108 (1998).en_US
dc.identifier.citedreferenceS. Keitoku and H. Ezumi, IEEE Trans. J. Magn. Jpn. ITJJER7, 858 (1992).en_US
dc.identifier.citedreferenceP. R. Wilmott, R. Timm, and J. R. Huber, J. Appl. Phys. JAPIAU82, 2082 (1997).en_US
dc.identifier.citedreferenceE. N. Glezer and E. Mazu, Appl. Phys. Lett. APPLAB71, 882 (1997).en_US
dc.identifier.citedreferenceJ. Ihlemann, Appl. Surf. Sci. ASUSEE54, 193 (1992).en_US
dc.identifier.citedreferenceK. Sugioka, S. Wada, H. Tashiro, K. Toyoda, and A. Nakamura, Appl. Phys. Lett. APPLAB65, 1510 (1994).en_US
dc.identifier.citedreferenceT. P. Chen, T.-I. Bao, and I. Lin, Appl. Phys. Lett. APPLAB63, 2475 (1993).en_US
dc.identifier.citedreferenceJ. T. Dickinson, S. C. Langford, L. C. Jensen, P. A. Eschbach, L. R. Pederson, and D. R. Baer, J. Appl. Phys. JAPIAU68, 1831 (1990).en_US
dc.identifier.citedreferenceZ. Ren, Y. Du, Y. Qiu, J. Wu, Z. Ying, X. Xiong, and F. Li, Phys. Rev. B PRBMDO51, 5274 (1995).en_US
dc.identifier.citedreferenceJ. Christiansen and C. Schultheiss, Z. Phys. A ZPAADB290, 35 (1979).en_US
dc.identifier.citedreferenceW. Benker, J. Christiansen, K. Frank, H. Gundel, W. Hartmann, T. Redel, and M. Stetter, IEEE Trans. Plasma Sci. ITPSBD17, 754 (1989).en_US
dc.identifier.citedreferenceR. Stark, J. Christiansen, K. Frank, F. Mucke, and M. Stetter, IEEE Trans. Plasma Sci. ITPSBD23, 258 (1995).en_US
dc.identifier.citedreferenceS. Christiansen, F. Mucke, J. Markl, W. Dorsch, R. Stark, K. Frank, H. P. Strunk, G. Saemann-Ischenko, and J. Christiansen, J. Cryst. Growth JCRGAE166, 848 (1996).en_US
dc.identifier.citedreferenceG. Muller and C. Schultheiss, Proceedings of 10th International Conference On High Power Particle Beams, San Diego, 20–24 June 1994 (unpublished), Vol. 2, p. 833.en_US
dc.identifier.citedreferenceQ. D. Jiang, F. C. Matacotta, M. C. Konijnenberg, G. Muller, and C. Schultheiss, Thin Solid Films THSFAP241, 100 (1994).en_US
dc.identifier.citedreferenceTh. Witke, A. Lenk, B. Schultrich, and C. Schultheiss, Surf. Coat. Technol. SCTEEJ74, 580 (1995).en_US
dc.identifier.citedreferenceS. D. Kovaleski, R. M. Gilgenbach, L. K. Ang, Y. Y. Lau, and J. S. Lash, Appl. Surf. Sci. ASUSEE127–129, 947 (1998).en_US
dc.identifier.citedreferenceS. D. Kovaleski, R. M. Gilgenbach, L. K. Ang, and Y. Y. Lau, Appl. Phys. Lett. APPLAB73, 2576 (1998).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, S. D. Kovaleski, J. S. Lash, L. K. Ang, and Y. Y. Lau, IEEE Trans. Plasma Sci. ITPSBD27, 150 (1999).en_US
dc.identifier.citedreferenceH.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).en_US
dc.identifier.citedreferenceR. Jayakumar and H. H. Fleischmann, J. Quant. Spectrosc. Radiat. Transf. JQSRAE33, 177 (1985).en_US
dc.identifier.citedreferenceM. L. Brake and T. E. Repetti, IEEE Trans. Plasma Sci. ITPSBD17, 60 (1989).en_US
dc.identifier.citedreferenceNIST Atomic Spectra Database, March 22, 1999, National Institute of Standards and Technology, March 31, 1999, ⟨http://physics.nist.gov/cgi-bin/AtData/main_asd⟩.en_US
dc.identifier.citedreferenceJ. Hermann, C. Vivien, A. P. Carricato, and C. Boulmer-Leborgne, Appl. Surf. Sci. ASUSEE127-129, 645 (1998).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, C. H. Ching, J. S. Lash, and R. A. Lindley, Phys. Plasmas PHPAEN1, 1619 (1994).en_US
dc.identifier.citedreferenceL. A. Doyle, G. W. Martin, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, Appl. Surf. Sci. ASUSEE127–129, 716 (1998).en_US
dc.identifier.citedreferenceG. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, Appl. Surf. Sci. ASUSEE127–129, 710 (1998).en_US
dc.identifier.citedreferenceR. M. Gilgenbach and P. L. G. Ventzek, Appl. Phys. Lett. APPLAB58, 1597 (1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.