Show simple item record

High power laser semiconductor interactions: A Monte Carlo study for silicon

dc.contributor.authorYeom, Keesooen_US
dc.contributor.authorJiang, Hongtaoen_US
dc.contributor.authorSingh, J.en_US
dc.date.accessioned2010-05-06T21:47:15Z
dc.date.available2010-05-06T21:47:15Z
dc.date.issued1997-02-15en_US
dc.identifier.citationYeom, K.; Jiang, H.; Singh, J. (1997). "High power laser semiconductor interactions: A Monte Carlo study for silicon." Journal of Applied Physics 81(4): 1807-1812. <http://hdl.handle.net/2027.42/70199>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70199
dc.description.abstractIn this article, we use Monte Carlo methods to study the interaction of high power laser pulses with electrons in the conduction band of semiconductors. The laser field is represented by a sinusoidal electric field which tends to cause an oscillatory motion in the electrons. The scattering of electrons from the lattice force the electrons to lose phase coherence with the field. The approach is applied to silicon. We use the approach to examine the carrier energy distribution and material breakdown due to the transfer of energy from the laser to the electrons followed by impact ionization. The impact ionization coefficient, α, and its dependence on the laser frequency and field strength is examined and compared to the values in a dc field. In general, the ac value is smaller than the dc value, but at low frequencies and high field strengths, the ac impact ionization coefficient approaches the dc value at the same rms field value. The importance of collisions in the energy transfer process is elucidated. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent106050 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHigh power laser semiconductor interactions: A Monte Carlo study for siliconen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70199/2/JAPIAU-81-4-1807-1.pdf
dc.identifier.doi10.1063/1.364037en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceD. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. APPLABAIP64, 3071 (1994).en_US
dc.identifier.citedreferenceE. Yablonovitch and N. Bloembergen, Phys. Rev. Lett. PRLTAOAIP29, 907 (1972).en_US
dc.identifier.citedreferenceN. Bloembergen, IEEE J. Quantum Electron. IEJQA7INSQE-10, 375 (1974).en_US
dc.identifier.citedreferenceP. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, Mater. Res. Soc. Symp. Proc. MRSPDHINS397, 45 (1996).en_US
dc.identifier.citedreferenceW. Spitzer and H. Y. Fan, Phys. Rev. PHRVAOAIP108, 268 (1957).en_US
dc.identifier.citedreferenceB. Kochman, K. Yeom, and J. Singh, Appl. Phys. Lett. APPLABAIP68, 1936 (1996).en_US
dc.identifier.citedreferenceC. Jacoboni and L. Reggiani, Rev. Mod. Phys. RMPHATAIP55, 645 (1983).en_US
dc.identifier.citedreferenceM. V. Fischetti, IEEE Trans. Electron Devices IETDAIINS38, 634 (1991).en_US
dc.identifier.citedreferenceK. Hess, Advanced Theory of Semiconductor Devices (Prentice Hall, Englewood Cliffs, NJ, 1988).en_US
dc.identifier.citedreferenceY. Kamakura, H. Mizuno, M. Yamaji, M. Morifuji, K. Tanaguchi, C. Hamaguchi, T. Kunikiyo, and M. Takenaka, J. Appl. Phys. JAPIAUAIP75, 3500 (1994).en_US
dc.identifier.citedreferenceL. V. Keldysh, Sov. Phys. JETP SPHJARINS10, 509 (1960).en_US
dc.identifier.citedreferenceA. R. Beattie, Semicond. Sci. Technol. SSTEETINS3, 48 (1988).en_US
dc.identifier.citedreferenceR. Thoma, H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C. Jacoboni, J. Appl. Phys. JAPIAUAIP69, 789 (1991).en_US
dc.identifier.citedreferenceR. Thoma, H. J. Peifer, and W. L. Engl, J. Appl. Phys. JAPIAUAIP69, 2300 (1991).en_US
dc.identifier.citedreferenceE. Cartier, M. Fischetti, E. Eklund, and F. McFeely, Appl. Phys. Lett. APPLABAIP62, 3339 (1993).en_US
dc.identifier.citedreferenceN. Sano and A. Yoshi, J. Appl. Phys. JAPIAUAIP77, 2020 (1995).en_US
dc.identifier.citedreferenceC. A. Lee, R. A. Logan, R. L. Bartdorf, J. J. Kleimack, and W. Wieggmann, Phys. Rev. A PLRAANAIP134, 761 (1964).en_US
dc.identifier.citedreferenceR. Van Overstraeten and H. De Man, Solid-State Electron. SSELA5INS13, 583 (1970).en_US
dc.identifier.citedreferenceW. N. Grant, Solid-State Electron. SSELA5INS16, 1189 (1973).en_US
dc.identifier.citedreferenceM. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. SSELA5INS16, 381 (1973).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.