Show simple item record

Evolution of structural and optical properties of ion-beam synthesized GaAsN nanostructures

dc.contributor.authorWeng, X.en_US
dc.contributor.authorClarke, S. J.en_US
dc.contributor.authorYe, W.en_US
dc.contributor.authorKumar, S.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.contributor.authorDaniel, A. V.en_US
dc.contributor.authorClarke, Royen_US
dc.contributor.authorHolt, J.en_US
dc.contributor.authorSipowska, J.en_US
dc.contributor.authorFrancis, Anthony H.en_US
dc.contributor.authorRotberg, V. H. (Victor H.)en_US
dc.date.accessioned2010-05-06T21:49:41Z
dc.date.available2010-05-06T21:49:41Z
dc.date.issued2002-10-01en_US
dc.identifier.citationWeng, X.; Clarke, S. J.; Ye, W.; Kumar, S.; Goldman, R. S.; Daniel, A.; Clarke, R.; Holt, J.; Sipowska, J.; Francis, A.; Rotberg, V. (2002). "Evolution of structural and optical properties of ion-beam synthesized GaAsN nanostructures." Journal of Applied Physics 92(7): 4012-4018. <http://hdl.handle.net/2027.42/70225>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70225
dc.description.abstractWe have investigated the evolution of structural and optical properties of GaAsN nanostructures synthesized by N ion implantation into epitaxial GaAs, followed by rapid thermal annealing. Transmission electron microscopy and x-ray diffraction indicate the formation of nanometer-sized crystallites with lattice parameters close to those of pure zincblende GaN. The average crystallite size increases with annealing temperature while the size distribution is self-similar and the volume fraction remains constant, suggesting a coarsening process governed by Ostwald ripening. These GaAsN nanostructures exhibit significant photoluminescence in the near infrared range. The apparent lowering of the fundamental band gap is likely due to the incorporation of a small amount of As in GaN. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent959016 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEvolution of structural and optical properties of ion-beam synthesized GaAsN nanostructuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumApplied Physics Program, University of Michigan, Ann Arbor, Michigan 48109-1120en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70225/2/JAPIAU-92-7-4012-1.pdf
dc.identifier.doi10.1063/1.1504177en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceI. A. Buyanova, W. M. Chen, and B. Monemar, MRS Internet J. Nitride Semicond. Res. MIJNF76, 1 (2001).en_US
dc.identifier.citedreferenceL. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B PRBMDO54, 17 568 (1996).en_US
dc.identifier.citedreferenceW. G. Bi and C. W. Tu, Appl. Phys. Lett. APPLAB70, 1608 (1997).en_US
dc.identifier.citedreferenceY. Zhao, F. Deng, S. S. Lau, and C. W. Tu, J. Vac. Sci. Technol. B JVTBD916, 1297 (1998).en_US
dc.identifier.citedreferenceK. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett. APPLAB74, 1254 (1999).en_US
dc.identifier.citedreferenceJ. Salzman and H. Temkin, Mater. Sci. Eng., B MSBTEK50, 148 (1997).en_US
dc.identifier.citedreferenceR. S. Goldman, R. M. Feenstra, B. G. Briner, M. L. O’Steen, and R. J. Hauenstein, Appl. Phys. Lett. APPLAB69, 3698 (1996).en_US
dc.identifier.citedreferenceR. S. Goldman, R. M. Feenstra, B. G. Briner, M. L. O’Steen, and R. J. Hauenstein, J. Electron. Mater. JECMA526, 1997 (1997).en_US
dc.identifier.citedreferenceH. P. Xin, K. L. Kavanagh, Z. Q. Zhu, and C. W. Tu, Appl. Phys. Lett. APPLAB74, 2337 (1999).en_US
dc.identifier.citedreferenceT. S. Cheng, C. T. Foxon, L. C. Jenkins, S. E. Hooper, J. W. Orton, S. V. Novikov, T. B. Popova, and V. V. Tretyakov, J. Cryst. Growth JCRGAE158, 399 (1996).en_US
dc.identifier.citedreferenceG. Mendoza-Diaz, K. S. Stevens, A. F. Schwartzman, and R. Beresford, J. Cryst. Growth JCRGAE178, 45 (1997).en_US
dc.identifier.citedreferenceW. Shan, K. M. Yu, W. Walukiewicz, J. W. Ager III, E. E. Haller, and M. C. Ridgway, Appl. Phys. Lett. APPLAB75, 1410 (1999).en_US
dc.identifier.citedreferenceK. M. Yu, W. Walukiewicz, W. Shan, J. Wu, J. W. Beeman, J. W. Ager III, and E. E. Haller, Appl. Phys. Lett. APPLAB77, 3607 (2000).en_US
dc.identifier.citedreferenceJ. Jasinski, K. M. Yu, W. Walukiewicz, J. Washburn, and Z. Liliental-Weber, Appl. Phys. Lett. APPLAB79, 931 (2001).en_US
dc.identifier.citedreferenceK. M. Yu, W. Walukiewicz, J. Wu, J. W. Beeman, J. W. Ager III, E. E. Haller, W. Shan, H. P. Xin, C. W. Tu, and M. C. Ridgway, J. Appl. Phys. JAPIAU90, 2227 (2001).en_US
dc.identifier.citedreferenceT. Shima, S. Kimura, T. Iida, A. Obara, Y. Makita, K. Kudo, and K. Tanaka, Nucl. Instrum. Methods Phys. Res. B NIMBEU118, 743 (1996).en_US
dc.identifier.citedreferenceK. Kuriyama, T. Tsunoda, N. Hayashi, and Y. Takahashi, Nucl. Instrum. Methods Phys. Res. B NIMBEU148, 432 (1999).en_US
dc.identifier.citedreferenceX. W. Lin, M. Behar, R. Maltez, W. Swider, Z. Liliental-Weber, and J. Washburn, Appl. Phys. Lett. APPLAB67, 2699 (1995).en_US
dc.identifier.citedreferenceImplantation Science Corp., Wakefield, MA 01880.en_US
dc.identifier.citedreferenceJ. Ziegler, IBM Corp.en_US
dc.identifier.citedreferenceG. Amsel, J. P. Nadai, E. d’Artemare, D. David, E. Girard, and J. Moulin, Nucl. Instrum. Methods NUIMAL92, 481 (1971).en_US
dc.identifier.citedreferenceD. B. Williams, Practical Analytical Electron Microscopy in Materials Science (Philips Electronic Instruments, Mahwah, 1984).en_US
dc.identifier.citedreferenceH. Okumura, S. Misawa, and S. Yoshida, Appl. Phys. Lett. APPLAB59, 1058 (1991).en_US
dc.identifier.citedreferenceS. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D. J. Smith, W. J. Choyke, and H. Morkoç, J. Vac. Sci. Technol. B JVTBD99, 1924 (1991).en_US
dc.identifier.citedreferenceB. E. Warren, X-ray Diffraction (Dover, New York, 1990).en_US
dc.identifier.citedreferenceX. Yang, R. Wang, H. Yan, and Z. Zhang, Mater. Sci. Eng., B MSBTEK49, 5 (1997).en_US
dc.identifier.citedreferenceI. Jenčič, M. W. Bench, I. M. Robertson, and M. A. Kirk, J. Appl. Phys. JAPIAU69, 1287 (1991).en_US
dc.identifier.citedreferenceB. A. Turkot, D. V. Forbes, I. M. Robertson, J. J. Coleman, L. E. Rehn, M. A. Kirk, and P. M. Baldo, J. Appl. Phys. JAPIAU78, 97 (1995).en_US
dc.identifier.citedreferenceC. Licoppe, Y. Nissim, C. Meriadec, and P. Hénoc, Appl. Phys. Lett. APPLAB50, 1648 (1987).en_US
dc.identifier.citedreferenceM. Leszczynski, in Properties, Processing and Applications of Gallium Nitride and Related Semiconductors, edited by J. H. Edgar, S. T. Strite, I. Akasaki, H. Amano, and C. Wetzel (INSPEC, London, UK, 1999), p. 3.en_US
dc.identifier.citedreferenceT. Ito, K. Shiraishi, and A. Taguchi, J. Cryst. Growth JCRGAE227–228, 366 (2001).en_US
dc.identifier.citedreferenceR. Banerjee, R. Jayakrishnan, and P. Ayyub, J. Phys.: Condens. Matter JCOMEL12, 10 647 (2000).en_US
dc.identifier.citedreferenceM. C. Ridgway, C. J. Glover, G. Foran, and K. M. Yu, J. Appl. Phys. JAPIAU83, 4610 (1998).en_US
dc.identifier.citedreferenceM. M. J. Treacy and J. M. Gibson, Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ52, 212 (1996).en_US
dc.identifier.citedreferenceP. W. Voorhees, J. Stat. Phys. JSTPBS38, 231 (1985).en_US
dc.identifier.citedreferenceY. Masuda and R. Watanabe, Sintering Processes, Materials Science Research (Plenum, New York, 1979), Vol. 13.en_US
dc.identifier.citedreferenceJ. M. Martin and R. D. Doherty, Stability of Microstructure in Metallic Systems (Cambridge University Press, London, 1976).en_US
dc.identifier.citedreferenceA. J. Ardell, Acta Metall. AMETAR20, 61 (1972).en_US
dc.identifier.citedreferenceZ. Liliental-Weber, X. W. Lin, J. Washburn, and W. Schaff, Appl. Phys. Lett. APPLAB66, 2086 (1995).en_US
dc.identifier.citedreferenceG. Bösker, N. A. Stolwijk, J. V. Thordson, U. Södervall, and T. G. Andersson, Phys. Rev. Lett. PRLTAO81, 3443 (1998).en_US
dc.identifier.citedreferenceN. H. Ky and F. K. Reinhart, J. Appl. Phys. JAPIAU83, 718 (1998).en_US
dc.identifier.citedreferenceN. H. Ky, D. Martin, and F. K. Reinhart, Physica B PHYBE3273, 729 (1999).en_US
dc.identifier.citedreferenceM. Leroux and B. Gil, in Properties, Processing and Applications of Gallium Nitride and Related Semiconductors, edited by J. H. Edgar, S. T. Strite, I. Akasaki, H. Amano, and C. Wetzel (INSPEC, London, UK, 1999), p. 45.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.