Show simple item record

Acoustic emission from plastic deformation of a pure single crystal

dc.contributor.authorChung, Jin‐boken_US
dc.contributor.authorKannatey‐Asibu, Elijahen_US
dc.date.accessioned2010-05-06T21:51:35Z
dc.date.available2010-05-06T21:51:35Z
dc.date.issued1992-09-01en_US
dc.identifier.citationChung, Jin‐Bok; Kannatey‐Asibu, Elijah (1992). "Acoustic emission from plastic deformation of a pure single crystal." Journal of Applied Physics 72(5): 1812-1820. <http://hdl.handle.net/2027.42/70245>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70245
dc.description.abstractAcoustic emission (AE) during plastic deformation is analyzed for a pure single crystal neglecting the effects of grain boundaries, impurities, and second‐phase particles. Acceleration of a moving dislocation is considered to be the principal AE source. There are two major mechanisms of dislocation motion related to acceleration, initial, and continuous oscillatory motion. Initial motion induced by the creation of mobile dislocations is modeled as a step function of velocity. Continuous oscillatory motion produced by interactions with neighboring dislocations is modeled as a harmonic function. These mechanisms vary with strain and strain rate due to dislocation multiplication. AE can thus be described in terms of strain and strain rate. Annihilation at a free surface is also regarded as an AE source in addition to the initial and oscillatory motions. The kinetic and strain energies stored around a moving dislocation are dissipated during annihilation, and can be related to AE. The frequency spectrum of AE is also determined. A shift of the spectrum to higher frequencies with increasing strain is explained by an increase in the interaction force between dislocations.en_US
dc.format.extent3102 bytes
dc.format.extent1086618 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAcoustic emission from plastic deformation of a pure single crystalen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, The University of Michigan, Ann Arbor, Michigan 48105en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70245/2/JAPIAU-72-5-1812-1.pdf
dc.identifier.doi10.1063/1.351652en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceN. Kiesewetter and P. Schiller, Phys. Status Solidi A 38, 569 (1976).en_US
dc.identifier.citedreferenceK. Kuribayashi and T. Kishi, Mater. Sci. Eng. 33, 159 (1978).en_US
dc.identifier.citedreferenceC. Scruby, H. Wadley, and J. E. Sinclair, Philos Mag. 44, 249 (1981).en_US
dc.identifier.citedreferenceF. R. N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, London, 1967).en_US
dc.identifier.citedreferenceR. J. Clifton and X. Markenscoff, J. Mech. Phys. Solids 29, 227 (1981).en_US
dc.identifier.citedreferenceX. Markenscoff and R. J. Clifton, J. Mech. Phys. Solids 29, 253 (1981).en_US
dc.identifier.citedreferenceJ. Kiusalaas and T. Mura, Recent Adv. Eng. Sci. 1, 543 (1964).en_US
dc.identifier.citedreferenceJ. P. Hirth and J. Lothe, Theory of Dislocations (Wiley-Interscience, New York, 1982).en_US
dc.identifier.citedreferenceJ. Weertman, Response of Metals to High Velocity Deformation, edited by P. G. Shewman and V. F. Zackay (Wiley-Interscience, New York, 1961), pp. 205–247.en_US
dc.identifier.citedreferenceH. Hatano, J. Appl. Phys. 49, 3873 (1976).en_US
dc.identifier.citedreferenceF. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, Adv. Phys. 13, 193 (1964).en_US
dc.identifier.citedreferenceW. C. Leslie, The Physical Metallurgy of Steels (McGraw-Hill, New York, 1982).en_US
dc.identifier.citedreferenceH. Hatano, J. Acoust. Soc. Am. 57, 639 (1975).en_US
dc.identifier.citedreferenceS. H. Carpenter and C. Chen, J. Acoust. Emis. 7, 161 (1988).en_US
dc.identifier.citedreferenceW. F. Hosford and R. M. Caddell, Metal Forming Mechanics and Metallurgy (Prentice-Hall, Englewood Cliffs, NJ, 1983).en_US
dc.identifier.citedreferenceD. Rouby and P. Fleischmann, Phys. Status Solidi A 48, 439 (1978).en_US
dc.identifier.citedreferenceE. W. Hart, Phys. Rev. 98, 1775 (1955).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.