Show simple item record

Epitaxial La-doped SrTiO3SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon

dc.contributor.authorLiu, B. T.en_US
dc.contributor.authorMaki, K.en_US
dc.contributor.authorSo, Y.en_US
dc.contributor.authorNagarajan, V.en_US
dc.contributor.authorRamesh, Ramamoorthyen_US
dc.contributor.authorLettieri, Jamesen_US
dc.contributor.authorHaeni, J. H.en_US
dc.contributor.authorSchlom, Darrell G.en_US
dc.contributor.authorTian, Weien_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorWalker, F. J.en_US
dc.contributor.authorMcKee, R. A.en_US
dc.date.accessioned2010-05-06T21:51:46Z
dc.date.available2010-05-06T21:51:46Z
dc.date.issued2002-06-24en_US
dc.identifier.citationLiu, B. T.; Maki, K.; So, Y.; Nagarajan, V.; Ramesh, R.; Lettieri, J.; Haeni, J. H.; Schlom, D. G.; Tian, W.; Pan, X. Q.; Walker, F. J.; McKee, R. A. (2002). "Epitaxial La-doped SrTiO3SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon." Applied Physics Letters 80(25): 4801-4803. <http://hdl.handle.net/2027.42/70247>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70247
dc.description.abstractUse of an epitaxial conducting template has enabled the integration of epitaxial ferroelectric perovskites on silicon. The conducting template layer, LaxSr1−xTiO3LaxSr1−xTiO3 (LSTO), deposited onto (001) silicon wafers by molecular-beam epitaxy is then used to seed {001}-oriented epitaxial perovskite layers. We illustrate the viability of this approach using PbZr0.4Ti0.6O3PbZr0.4Ti0.6O3 (PZT) as the ferroelectric layer contacted with conducting perovskite La0.5Sr0.5CoO3La0.5Sr0.5CoO3 (LSCO) electrodes. An important innovation that further facilitates this approach is the use of a low-temperature (450 °C) sol–gel process to crystallize the entire ferroelectric stack. Both transmission electron microscopy and x-ray diffraction analysis indicate the LSCO/PZT/LSCO/LSTO/Si heterostructures are epitaxial. The electrical response of ferroelectric capacitors (for pulse widths down to 1 μs) measured via the underlying silicon substrate is identical to measurements made using conventional capacitive coupling method, indicating the viability of this approach. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent142615 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEpitaxial La-doped SrTiO3SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on siliconen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials and Nuclear Engineering and Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802-5005en_US
dc.contributor.affiliationotherOak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6118en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70247/2/APPLAB-80-25-4801-1.pdf
dc.identifier.doi10.1063/1.1484552en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceO. Auciello, J. F. Scott, and R. Ramesh, Phys. Today PHTOAD51, 22 (1998).en_US
dc.identifier.citedreferenceSee for example, Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits, edited by S. P. Murarka, M. Eizenberg, D. B. Fraser, R. Madar, and R. T. Tung (Materials Research Society, Warrendale, PA, 1998), Vol. 514.en_US
dc.identifier.citedreferenceB. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh, and J. S. Lee, Appl. Phys. Lett. APPLAB71, 356 (1997).en_US
dc.identifier.citedreferenceS. Aggarwal, B. Nagaraj, I. G. Jenkins, H. Li, R. P. Sharma, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, A. R. Krauss, and O. Auciello, Acta Mater. ACMAFD48, 3387 (2000).en_US
dc.identifier.citedreferenceS. R. Summerfelt, T. S. Moise, G. Xing, L. Colombo, T. Sakoda, S. R. Gilbert, A. L. S. Loke, S. Ma, L. A. Wills, R. Kavari, T. Hsu, J. Amano, S. T. Johnson, D. J. Vestcyk, M. W. Russell, S. M. Bilodeau, and P. van Buskirk, Appl. Phys. Lett. APPLAB79, 4004 (2001).en_US
dc.identifier.citedreferenceA. Gruverman, Appl. Phys. Lett. APPLAB75, 1452 (1999).en_US
dc.identifier.citedreferenceT. Yamaguti, Proc. Phys. Math. Soc. Jpn. PPMJAJ17, 443 (1935).en_US
dc.identifier.citedreferenceR. Sato, J. Phys. Soc. Jpn. JUPSAU6, 527 (1951).en_US
dc.identifier.citedreferenceM. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodama, H. Yamawaki, and T. Yamaoka, J. Electrochem. Soc. JESOAN129, 2569 (1982).en_US
dc.identifier.citedreferenceS. Matsubara, N. Shohata, and M. Mikami, Jpn. J. Appl. Phys., Suppl. JJPYA524, 10 (1985).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. PRLTAO81, 3014 (1998).en_US
dc.identifier.citedreferenceA. Lin, X. Hong, V. Wood, A. A. Verevkin, C. H. Ahn, R. A. Mckee, F. J. Walker, and E. D. Specht, Appl. Phys. Lett. APPLAB78, 2034 (2001).en_US
dc.identifier.citedreferenceK. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, Appl. Phys. Lett. APPLAB76, 1324 (2000).en_US
dc.identifier.citedreferenceY. Wang, C. Ganpule, B. T. Liu, H. Li, K. Mori, B. Hill, M. Wuttig, R. Ramesh, J. Finder, Z. Yu, R. Droopad, and K. Eisenbeiser, Appl. Phys. Lett. APPLAB80, 97 (2002).en_US
dc.identifier.citedreferenceO. N. Tufte and P. W. Chapman, Phys. Rev. PHRVAO155, 796 (1967); H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler, Phys. Rev. PRVAAH134, A442 (1964); H. Yamada and G. R. Miller, J. Solid State Chem. JSSCBI6, 169 (1973).en_US
dc.identifier.citedreferenceK. Maki, N. Soyama, K. Nagamine, S. Mori, and K. Ogi, Jpn. J. Appl. Phys., Part 1 JAPNDE40, 5533 (2001).en_US
dc.identifier.citedreferenceThroughout this manuscript, the pseudocubic indices for La0.5Sr0.5CoO3La0.5Sr0.5CoO3 are used (a = 3.83 Å).(a=3.83Å).en_US
dc.identifier.citedreferenceW. Tian, X. Q. Pan, B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, and D. G. Schlom (unpublished).en_US
dc.identifier.citedreferenceE. Fatuzzo and W. J. Merz, Ferroelectricity (Wiley, New York, 1967).en_US
dc.identifier.citedreferenceR. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, D. K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett. APPLAB61, 1537 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.