Show simple item record

Structure of the chlorobenzene–argon dimer: Microwave spectrum and ab initio analysis

dc.contributor.authorOh, Jung Jinen_US
dc.contributor.authorPark, Inheeen_US
dc.contributor.authorWilson, Robb J.en_US
dc.contributor.authorPeebles, Sean A.en_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.contributor.authorKraka, Elfien_US
dc.contributor.authorCremer, Dieteren_US
dc.date.accessioned2010-05-06T21:52:08Z
dc.date.available2010-05-06T21:52:08Z
dc.date.issued2000-11-22en_US
dc.identifier.citationOh, Jung Jin; Park, Inhee; Wilson, Robb J.; Peebles, Sean A.; Kuczkowski, Robert L.; Kraka, Elfi; Cremer, Dieter (2000). "Structure of the chlorobenzene–argon dimer: Microwave spectrum and ab initio analysis." The Journal of Chemical Physics 113(20): 9051-9059. <http://hdl.handle.net/2027.42/70251>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70251
dc.description.abstractThe rotational spectra of the 35Cl35Cl and 37Cl37Cl isotopes of the chlorobenzene–argon van der Waals dimer have been assigned using Fourier transform microwave spectroscopy techniques. Rotational constants and chlorine nuclear quadrupole coupling constants were determined which confirm that the complex has CsCs symmetry. The argon is over the aromatic ring, shifted from a position above the geometrical ring center towards the substituted carbon atom, and at a distance of about 3.68 Å from it. This distance is 0.1–0.2 Å shorter than the similar distance in the benzene–argon and fluorobenzene–argon complexes. Experimental results are confirmed and explained with the help of second-order Møller–Plesset perturbation calculations using a VDZP+diffVDZP+diff basis set. The complex binding energy of the chlorobenzene–argon complex is 1.28 kcal/mol (fluorobenzene–argon, 1.17; benzene–argon, 1.12 kcal/mol) reflecting an increase in stability caused by larger dispersion interactions when replacing one benzene H atom by F or by Cl. The structure and stability of Ar⋅C6H5–XAr⋅C6H5–X complexes are explained in terms of a balance between stabilizing dispersion and destabilizing exchange repulsion interactions between the monomers. © 2000 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent282869 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleStructure of the chlorobenzene–argon dimer: Microwave spectrum and ab initio analysisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.contributor.affiliationotherDepartment of Chemistry, SookMyung Women’s University, Seoul, Koreaen_US
dc.contributor.affiliationotherDepartment of Chemistry and Physics, Louisiana State University at Shreveport, Shreveport, Louisiana 71115en_US
dc.contributor.affiliationotherDepartment of Theoretical Chemistry, Göteborg University, S-41320 Göteborg, Reutersgatan 2, Swedenen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70251/2/JCPSA6-113-20-9051-1.pdf
dc.identifier.doi10.1063/1.1319997en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. Bauder, J. Mol. Struct. JMOSB4408, 33 (1997).en_US
dc.identifier.citedreferenceFor example, for the benzene–argon system see H. Koch, B. Fernández, and O. Christiansen, J. Chem. Phys. JCPSA6108, 2784 (1998), and references therein.en_US
dc.identifier.citedreferenceTh. Brupbacher, J. Makarewicz, and A. Bauder, J. Chem. Phys. JCPSA6101, 9736 (1994).en_US
dc.identifier.citedreferenceR. A. Appleman, S. A. Peebles, and R. L. Kuczkowski, J. Mol. Struct. JMOSB4446, 55 (1998).en_US
dc.identifier.citedreferenceR. J. Wilson, S. A. Peebles, S. Antolínez, M. E. Sanz, and R. L. Kuczkowski, J. Phys. Chem. A JPCAFH102, 10630 (1998).en_US
dc.identifier.citedreferenceR. Sussmann, R. Neuhauser, and H. Neusser, Can. J. Phys. CJPHAD72, 1179 (1994).en_US
dc.identifier.citedreferenceR. M. Spycher, L. Hausherr-Primo, G. Grassi, and A. Bauder, J. Mol. Struct. JMOSB4351, 7 (1995).en_US
dc.identifier.citedreferenceM. Onda, H. Mukaida, H. Akiba, M. Mori, H. Miyazaki, and I. Yamaguchi, J. Mol. Spectrosc. JMOSA3169, 480 (1995).en_US
dc.identifier.citedreferenceM. Onda, Y. Bitoh, and A. R. Hight Walker, J. Mol. Struct. JMOSB4410, 51 (1997).en_US
dc.identifier.citedreferenceE. Jochims, H. Mäder, and W. Stahl, J. Mol. Spectrosc. JMOSA3180, 116 (1996).en_US
dc.identifier.citedreferenceE. Kraka, D. Cremer, U. Spoerel, I. Merke, W. Stahl, and H. Dreizler, J. Phys. Chem. JPCHAX99, 12466 (1995).en_US
dc.identifier.citedreferenceU. Spoerel, H. Dreizler, W. Stahl, E. Kraka, and D. Cremer, J. Phys. Chem. JPCHAX100, 14298 (1996).en_US
dc.identifier.citedreferenceM. Mons, J. Le Calvé, F. Piuzzi, and I. Dimicoli, J. Chem. Phys. JCPSA692, 2155 (1990).en_US
dc.identifier.citedreferenceM. Mons and J. Le Calvé, Chem. Phys. CMPHC2146, 195 (1990).en_US
dc.identifier.citedreferenceT. J. Balle and W. H. Flygare, Rev. Sci. Instrum. RSINAK52, 33 (1981).en_US
dc.identifier.citedreferenceJ.-U. Grabow, Ph.D. thesis, University of Kiel, 1992.en_US
dc.identifier.citedreferenceH. M. Pickett, J. Mol. Spectrosc. JMOSA3148, 371 (1991).en_US
dc.identifier.citedreferenceJ. K. G. Watson, J. Chem. Phys. JCPSA646, 1935 (1967).en_US
dc.identifier.citedreferenceT. D. Klots, T. Emilsson, R. S. Ruoff, and H. S. Gutowsky, J. Phys. Chem. JPCHAX93, 1255 (1989).en_US
dc.identifier.citedreferenceR. M. Spycher, D. Petitprez, F. L. Bettens, and A. Bauder, J. Phys. Chem. JPCHAX98, 11863 (1994).en_US
dc.identifier.citedreferenceZ. Kisiel, J. Mol. Spectrosc. JMOSA3144, 381 (1990).en_US
dc.identifier.citedreferenceR. L. Poynter, J. Chem. Phys. JCPSA639, 1962 (1963).en_US
dc.identifier.citedreference(a) C. Møller and M. S. Plesset, Phys. Rev. PHRVAO46, 618 (1934); (b) For a recent review see, D. Cremer, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998), Vol. 3, p. 1706.en_US
dc.identifier.citedreferenceG. Chałasínski, D. J. Funk, J. Simons, and W. H. Breckenridge, J. Chem. Phys. JCPSA687, 3569 (1987).en_US
dc.identifier.citedreferenceM. A. Spackman, J. Phys. Chem. JPCHAX93, 7594 (1989).en_US
dc.identifier.citedreferenceP. C. Hariharan and J. A. Pople, Chem. Phys. Lett. CHPLBC16, 217 (1972).en_US
dc.identifier.citedreferenceS. F. Boys and F. Bernardi, Mol. Phys. MOPHAM19, 553 (1970).en_US
dc.identifier.citedreferenceFor a review on the basis set superposition problem, see F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe, Chem. Rev. CHREAY94, 1873 (1994).en_US
dc.identifier.citedreferenceL. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J. Chem. Phys. JCPSA6110, 4703 (1999).en_US
dc.identifier.citedreferenceE. Kraka, J. Gräfenstein, J. Gauss, F. Reichel, L. Olsson, Z. Konkoli, Z. He, Y. He, and D. Cremer, COLOGNE2000 (Göteborg University, Göteborg, 2000).en_US
dc.identifier.citedreference(a) J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, ACES II, Quantum Theory Project, University of Florida, 1992; (b) See also J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, Int. J. Quantum Chem., Symp. IJQSAF26, 879 (1992).en_US
dc.identifier.citedreferenceFor dipole moments and quadrupole moments of chlorobenzene and fluorobenzene, see (a) R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 10 (1967); (b) J. Hernandez-Trujillo and A. Vela, J. Phys. Chem. JPCHAX100, 6524 (1996).en_US
dc.identifier.citedreference(a) M. Onda, Nippon Kagaku Kaishi NKAKB811, 1476 (1986); (b) S. Cradock, J. M. Muir, and D. W. H. Rankin, J. Mol. Struct. JMOSB4220, 205 (1990).en_US
dc.identifier.citedreferenceS. Doraiswamy and S. D. Sharma, J. Mol. Struct. JMOSB4102, 81 (1983).en_US
dc.identifier.citedreferenceM. R. Zachariah, P. R. Westmoreland, D. R. Burgess, Jr., W. Tsang, and C. F. Melius, J. Phys. Chem. JPCHAX100, 8737 (1996).en_US
dc.identifier.citedreferenceJ. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, London, 1970).en_US
dc.identifier.citedreferenceJ. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed. (Chapman and Hall, New York, 1986).en_US
dc.identifier.citedreferenceE. J. Bieske, M. W. Rainbird, J. M. Atkinson, and A. E. W. Knight, J. Chem. Phys. JCPSA691, 752 (1989).en_US
dc.identifier.citedreferenceCRC Handbook of Chemistry and Physics on CD-ROM, 2000 Version, edited by D. R. Lide (CRC, Cleveland, 2000).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.