Show simple item record

Microwave and millimeter‐wave power generation in silicon carbide avalanche devices

dc.contributor.authorMehdi, Imranen_US
dc.contributor.authorHaddad, George I.en_US
dc.contributor.authorMains, R. K.en_US
dc.date.accessioned2010-05-06T21:52:14Z
dc.date.available2010-05-06T21:52:14Z
dc.date.issued1988-08-01en_US
dc.identifier.citationMehdi, I.; Haddad, G. I.; Mains, R. K. (1988). "Microwave and millimeter‐wave power generation in silicon carbide avalanche devices." Journal of Applied Physics 64(3): 1533-1540. <http://hdl.handle.net/2027.42/70252>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70252
dc.description.abstractSilicon carbide (SiC), due to its thermal and electronic properties, has long been considered an excellent device material for microwave and millimeter‐wave power generation. Numerical simulations were performed to study the typical power generating capabilities of SiC impact avalanche transit‐time (IMPATT) diodes utilizing the recent experimental data available. Operating characteristics of double‐drift IMPATT devices at 10, 35, 60 and 94 GHz are compared. Both pulsed mode and continuous‐wave (cw) mode operation are studied. Finally, a comparison among SiC, Si, and GaAs double‐drift IMPATT devices is made at various frequencies. It is shown that, for the pulsed mode of operation, SiC double‐drift IMPATT devices can produce significantly higher powers than Si and GaAs devices at comparable frequencies. In the cw mode of operation, SiC devices can produce significantly more power than GaAs devices at all frequencies. However, a comparison at 94 GHz indicates that SiC IMPATT diodes in the cw mode of operation produce power levels comparable to Si IMPATT devices. At lower frequencies the performance of SiC diodes operating in the cw mode is expected to be better than the performance of Si devices due to the better thermal conductivity of SiC.en_US
dc.format.extent3102 bytes
dc.format.extent1229766 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMicrowave and millimeter‐wave power generation in silicon carbide avalanche devicesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, Solid‐State Electronics Laboratory, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70252/2/JAPIAU-64-3-1533-1.pdf
dc.identifier.doi10.1063/1.341829en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. D. Parsons, R. F. Bunshah, and O. M. Stafsudd, Solid State Technol. 28, 133 (1985).en_US
dc.identifier.citedreferenceR. F. Davis and H. H. Stadlemaier, “Fundamental Studies of Growth, Doping and Transformation in Beta Silicon Carbide,” Technical Report No. 243‐043‐006, North Carolina State University (1985).en_US
dc.identifier.citedreferenceB. C. Johnson, J. M. Meese, G. W. Zajac, J. O. Schreiner, J. A. Kaduk, and T. H. Fleisch, Superlattices and Microstructures 2, 223 (1986).en_US
dc.identifier.citedreferenceS. Nishinio, J. A. Powell, and J. A. Will, Appl. Phys. Lett. 42, 460 (1983).en_US
dc.identifier.citedreferenceW. von Muench and E. Pettenpaul, J. Appl. Phys. 48, 4823 (1977).en_US
dc.identifier.citedreferenceL. Patrick and W. J. Choyke, Phys. Rev. B 2, 2255 (1970).en_US
dc.identifier.citedreferenceE. A. Burgemeister, W. von Muench, and E. Pattenpaul, J. Appl. Phys. 50, 5790 (1979).en_US
dc.identifier.citedreferenceA. P. Dmitriev, A. O. Konstantinov, D. P. Litvin, and V. I. Sankin, Sov. Phys. Semicond. 17, 686 (1983).en_US
dc.identifier.citedreferenceP. E. Bauhahn and G. I. Haddad, IEEE Trans. Electron Devices ED‐24, 634 (1977).en_US
dc.identifier.citedreferenceR. K. Mains and G. I. Haddad, in Infrared and Millimeter Waves, edited by K. J. Button (Academic, New York, 1983), Vol. 10.en_US
dc.identifier.citedreferenceR. K. Mains and G. I. Haddad, “Properties of High‐Efficiency X‐Band GaAs IMPATT Diodes,” Technical Report No. AFWAL‐TR‐81‐1066, Electron Physics Laboratory, The University of Michigan (1981).en_US
dc.identifier.citedreferenceD. P. Kennedy, J. Appl. Phys. 31, 1490 (1960).en_US
dc.identifier.citedreferenceH. M. Olson, IEEE Trans. Electron Devices ED‐23, 484 (1976).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.