Show simple item record

Photonic stopbands and light transmission characteristics in GaAs-based three dimensional waveguides with large index contrast

dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorZhou, Weidongen_US
dc.contributor.authorZhu, Donghaien_US
dc.contributor.authorSabarinathan, Jayshrien_US
dc.date.accessioned2010-05-06T21:52:47Z
dc.date.available2010-05-06T21:52:47Z
dc.date.issued1999-09-20en_US
dc.identifier.citationBhattacharya, Pallab; Zhou, Weidong; Zhu, Donghai; Sabarinathan, Jayshri (1999). "Photonic stopbands and light transmission characteristics in GaAs-based three dimensional waveguides with large index contrast." Applied Physics Letters 75(12): 1670-1672. <http://hdl.handle.net/2027.42/70258>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70258
dc.description.abstractA relatively simple technique to realize a III–V semiconductor based quasi-three-dimensional photonic crystal material with a refractive index contrast ∼2 is described. Fourier transform infrared spectroscopy measurement reveals a stop band between 15 and 20 μm for a sample with scattering center spacing of 6.3 μm. Another narrow transmittance dip is observable in the wavelength range of 1.1–1.58 μm, with an attenuation of 12 dB at 1.18 μm. The relation between transmission T and waveguide length L, as measured by 1.15 μm wavelength light is either T−L−2T−L−2 or T−exp(−L/L0),T−exp(−L/L0), indicating photon localization in the weakly disordered system. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent177946 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePhotonic stopbands and light transmission characteristics in GaAs-based three dimensional waveguides with large index contrasten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, Solid State Electronics Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70258/2/APPLAB-75-12-1670-1.pdf
dc.identifier.doi10.1063/1.124786en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceS. John, Phys. Rev. Lett. PRLTAO58, 2486 (1987).en_US
dc.identifier.citedreferenceE. Yablonovitch, J. Opt. Soc. Am. B JOBPDE10, 283 (1993).en_US
dc.identifier.citedreferenceD. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) NATUAS390, 671 (1997).en_US
dc.identifier.citedreferenceA. Figotin and A. Klein, J. Opt. Soc. Am. A JOAOD615, 1423 (1998).en_US
dc.identifier.citedreferenceK. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. SSCOA489, 413 (1994).en_US
dc.identifier.citedreferenceC. C. Chen and A. Scherer, J. Vac. Sci. Technol. B JVTBD913, 2696 (1995).en_US
dc.identifier.citedreferenceT. F. Krauss, R. M. De La Rue, and S. Brand, Nature (London) NATUAS383, 699 (1996).en_US
dc.identifier.citedreferenceS. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature (London) NATUAS394, 251 (1998), and references therein.en_US
dc.identifier.citedreferenceS. Noda, N. Yamamoto, and A. Sasaki, Jpn. J. Appl. Phys., Part 2 JAPLD836, L909 (1996).en_US
dc.identifier.citedreferenceJ. G. Fleming and S. Y. Lin, Opt. Lett. OPLEDP24, 49 (1999).en_US
dc.identifier.citedreferenceW. Laidig, N. Holonyak, Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, Appl. Phys. Lett. APPLAB38, 776 (1981).en_US
dc.identifier.citedreferenceJ. M. Dallesasse, N. Holonyak, Jr., S. R. Sugg, T. A. Richard, and N. El-Zein, Appl. Phys. Lett. APPLAB57, 2844 (1990).en_US
dc.identifier.citedreferenceJ.-H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, and H. J. Lee, Appl. Phys. Lett. APPLAB69, 3357 (1996).en_US
dc.identifier.citedreferenceM. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, Electron. Lett. ELLEAK30, 1147 (1994).en_US
dc.identifier.citedreferenceP. W. Evans, J. J. Wierer, and N. Holonyak, Jr., Appl. Phys. Lett. APPLAB70, 1119 (1997).en_US
dc.identifier.citedreferenceV. Arbet-Engels, E. Yablonovitch, C. C. Cheng, and A. Scherer, in Microcavities and Photonic Bandgaps, edited by Rarity & Weisbuch (Kluwer Academic, The Netherlands, 1996), p. 125.en_US
dc.identifier.citedreferenceD. Maystre, Pure Appl. Opt. PAOAE33, 975 (1994).en_US
dc.identifier.citedreferenceP. Sabouroux, G. Tayeb, and D. Maystre, Opt. Commun. OPCOB8160, 33 (1999).en_US
dc.identifier.citedreferenceJ. D. Joannopoulos, P. Villeneuve, and S. Fan, Nature (London) NATUAS386, 143 (1997).en_US
dc.identifier.citedreferenceA. Z. Genack and N. Garcia, J. Opt. Soc. Am. B JOBPDE10, 408 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.